Главная страница  |  Описание сайта  |  Контакты
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОГО ЦЕОЛИТА ТИПА 4А
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОГО ЦЕОЛИТА ТИПА 4А

СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОГО ЦЕОЛИТА ТИПА 4А

Патент Российской Федерации
Суть изобретения: Использование: в жидких детергентах, средствах для полоскания или в керамических глазурях, фриттах. Сущность изобретения: разбавленный раствор силиката натрия при 70 - 80С с помощью сопла тонко распыляется и вводится в разбавленный прозрачный щелок, полученный при производстве Al(OH)3 по способу Байера. Самопроизвольно выпадающий в осадок материал в маточном растворе при 70 - 80С подвергают процессу созревания до тех пор, пока не образуется мелкокристаллический порошкообразный цеолит типа 4А с гранулометрическим составом со значением d50 не более 3 мкм.
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

   С помощью Яндекс:  

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2005692
Класс(ы) патента: C01B33/34
Номер заявки: 4743562/26
Дата подачи заявки: 09.04.1990
Дата публикации: 15.01.1994
Заявитель(и): Лонца АГ (CH)
Автор(ы): Уве Гильцау[DE]
Патентообладатель(и): Лонца АГ (CH)
Описание изобретения: Изобретение относится к высокодисперсному кристаллическому порошку цеолитов типа 4А с предопределяемым гранулометрическим составом (определяемым значением d50) менее 3 мкм, к способу его получения, а также к его применению в качестве заменителя фосфата в жидких детергентах и средствах для полоскания или добавки к керамическим глазурям и спекшимся массам (фриттам).
Описан способ получения высокодисперсных цеолитов типа 4А, являющийся наиболее близким к данному. Для получения гранулометрического состава со значением d50 менее 3 мкм реагенты смешивают друг с другом и разбрызгивают с помощью механических вспомогательных средств, например сопел. В целях предотвращения засорения сопел вследствие самопроизвольного образования осадка в результате реакции раствора алюмината натрия с раствором жидкого стекла к обоим растворам добавляют окись калия, которая должна затормозить осаждение. Описанный способ предпочтительно осуществляют двумя стадиями, т. е. оба раствора сначала подвергают реакции при низкой температуре, после чего полученному продукту дают выкристаллизоваться при повышенной температуре. Получаемые согласно этому способу молекулярные сита в детергентах проявляют способность связывать кальций в количестве около 160 мг/г цеолита.
Цель изобретения заключалась в устранении недостатков указанных способов и в разработке простого способа получения высокодисперсных кристаллических цеолитов типа 4А, обладающих высокой способностью к связыванию кальция. Исходными материалами для нового способа должны служить такие недорогие вещества, как прозрачный щелок, образующийся при проведении способа Байера для получения гидроокиси алюминия, и техническое жидкое стекло (силикат натрия). Цеолитный порошок, получаемый по предлагаемому способу, должен быть кристаллическим, однородным относительно фазового состояния и не должен содержать грита. Кроме того, благодаря новому способу он должен характеризоваться точно регулируемым гранулометрическим составом.
Предлагаемый способ исходит из того факта, что раствор алюмината натрия (раствор I) самопроизвольно реагирует с раствором силиката натрия (раствор II) с образованием аморфного осадка, который в зависимости от температуры медленно переходит в кристаллический порошкообразный цеолит. Процесс созревания, т. е. перехода продукта из аморфного в кристаллическое состояние, сопровождается известными для перекристаллизации явлениями.
Согласно предлагаемому способу путем образования микроагломератов воздействуют на ход процесса кристаллизации. Это обеспечивает получение тонкодисперсного цеолитного порошка. Микроагломераты получают за счет подходящего регулирования концентрации растворов I и II в комбинации с разбрызгиванием их в виде капелек определенных размеров. Эти тонкодисперсные капельки, содержащие осаждаемое твердое вещество, являются основой образования однородного тонкодисперсного кристаллического цеолитного порошка.
Преимущество предлагаемого способа в том, что крупность частиц цеолитного порошка предопределяется условиями осаждения и окончательно устанавливается в результате процесса созревания.
В качестве раствора I, содержащего Na2O и Al2O3, можно использовать любой раствор, содержащий не менее 20 г/л Na2O и не менее 130 г/л Al2O3, причем целесообразное молярное соотношение Na2O: Al2O3 составляет 1,3-4,0, а преимущественное - 1,40-1,56. В качестве раствора 1 преимущественно применяют прозрачный щелок, образующийся при производстве гидроокиси алюминия по способу Байера. В случае необходимости щелок разбавляют до нужной концентрации.
В качестве раствора II, содержащего Na2O и SiO2, целесообразно использовать разбавленный раствор силиката натрия, содержащего не менее 34,7 г/л Na2O и не менее 119 г/л SiO2, причем молярное соотношение Na2O: SiO2 составляет 0,25-1,0. Преимущественно это стандартный технический раствор жидкого стекла с плотностью ок. 1,36 кг/л который разбавляется водой.
Для приготовления серий разбавлений предпочтительно используют водный конденсат или деионизированную воду.
Реакцию осаждения целесообразно осуществить при температуре в интервале 70-80оС, предпочтительно при температуре 75оС. Важное для предлагаемого способа распыление реагентов целесообразно осуществить с применением одного или более сопел. Согласно одному варианту предлагаемого способа исходят из раствора I, который с сильным перемешиванием поддерживается при необходимой для осаждения температуре, а раствор II фактически при той же температуре подается сквозь одно или более сопел в течение 0,5-5 ч, предпочтительно 2-3 ч. Пригодными для применения являются все сопла, которые при требуемом расходе жидкостей обеспечивают распыление раствора с образованием капелек со средним диаметром ок. 0,05 мм. При этом возможно использовать как сопла, служащие исключительно для распыления собственно раствора, так и сопла, которые при требуемом расходе жидкостей обеспечивают распыление раствора с образованием капелек со средним диаметром ок. 0,05 мм. При этом возможно использовать как сопла, служащие исключительно для распыления собственно раствора, так и сопла, служащие и для распыления одновременно подаваемой вспомогательной среды. Кроме того, возможно еще тонкое распыление раствора под воздействием ультразвука. Однако целесообразно использовать сопла для одновременного распыления двух компонентов, т. е. раствора и вспомогательной среды - сжатого воздуха. Распыляемый раствор предпочтительно подается в зону воронки, образовавшейся в результате сильного перемешивания исходного раствора.
Согласно другому предпочтительному варианту выполнения изобретения раствор I перемешивается так, чтобы он, стекая через подходящее приспособление, образовал пленку, в которую через сопло подается распыляемый раствор II.
Благодаря применению предлагаемого способа обеспечивается менее сложное получение тонкодисперсной взвеси молекулярного сита без добавки калия. В результате сильного перемешивания исходного раствора в зону распыляемого раствора постоянно подается свежий, еще не полностью прореагировавший раствор. Опасности засорения сопел избегают тем, что применяют всего лишь одно сопло.
Последующий процесс созревания обычно осуществляют, продолжая сильное перемешивание при 70-80оС, предпочтительно ок. 75оС, в течение 3-20 ч. Этот процесс можно осуществить в самом реакторе или в отдельном созревательном баке.
Согласно предлагаемому способу цели изобретения достигают в основном строгим соблюдением постоянства температуры, т. е. колебания температуры реакции должны находиться в пределах не более ± 2оС. Поэтому тепло, вызывающее превышение температуры реакции максимум на 6оС, следует отвести. Это особенно важно, потому что выше 83оС во все возрастающей мере следует ожидать образование содалита. Хотя этот минерал является одним из основных структурных элементов цеолита 4А, но он сам не обладает никакой ионообменной силой и при его образовании несмотря на высокую кристалличность не происходит повышения способности к связыванию кальция.
По достижении требуемого гранулометрического состава кристаллический продукт путем фильтрации отделяется от маточного раствора, промывается и в соответствии с предусмотренным назначением перерабатывается известным образом. Порошкообразный цеолит типа 4А, полученный согласно предлагаемому способу, в соответствии с задачей изобретения особенно пригоден для применения в жидких детергентах и средствах для полоскания и при соответствующей вязкости препаратированного средства фактически не проявляет тенденции к оседанию. При распылении раствора несмотря на применение сопел с тонкими отверстиями (диаметром менее 1 мм могут возникнуть крупные капли, образующиеся в результате совмещения мелких капелек. Подобного рода капли содержат такое количество осаждаемого твердого вещества, что в начале процесса контактирования с ними исходного, сильно перемешиваемого раствора образуется крупная аморфная частица. Из нее в течение процесса созревания образуются кристаллы, которые представляют собой сростки, построенные из нескольких мелких первичных кристаллитов. Последние и составляют нежелательную гритную долю цеолита.
Согласно одному варианту предлагаемого способа эти кристаллиты размалываются в шаровой мельнице с мешалкой. Размалывать можно после дозировки или непосредственно по истечении времени созревания.
Далее, целесообразно добавить цеолитный порошок, полученный по предлагаемому способу, к керамическим массам, в частности, для воздействия на окраску глазурей и спекшихся масс.
П р и м е р 1. В котел-смеситель емкостью 200 л загружали 90 л разбавленного прозрачного щелока, образующегося при проведении способа Байера, с содержанием 150 г/л Na2O и 125 г/л Al2O3 (раствор I) и нагревали до 75оС. Такое же количество разбавленного раствора силиката натрия с содержанием 34,7 г/л Na2O и 119,3 г/л SiO2 (раствора II), тоже нагретого до 75оС, с помощью сопла подавали в зону максимальной скорости течения прозрачного щелока, интенсивно перемешанного с помощью быстроходной мешалки, частота вращения - 3000 об/мин). В качестве cопла использовали плоскоструйное сопло (типа 652.404.17 ф-лы Лехлер). Время дозировки составляло 2,5 ч.
При контактировании раствора II с исходным раствором I самопроизвольно образовалось аморфное твердое тело, которое с точки зрения стехиометрии уже соответствовало желаемому цеолиту типа 4А, но кристалличность которого была еще недостаточной. Поэтому оно подвергалось процессу созревания в течение 4 ч. Осажденный продукт после созревания путем фильтрации отделяли от маточного раствора, который содержал всего лишь Na2O и Al2O3 но который практически был свободен от SiO2 и после нескольких стадий промывки высушивали продукт.
Достигнутый гранулометрический состав продукта определяли с помощью седиграфа и выражали в виде значения d50, которое составляло 2,9 мкм.
Продукт данного примера способен связывать кальций в количестве 167 мг СаО/г цеолита.
П р и м е р 2. Для проведения опыта применяли аппаратуру и процедуру, аналогичные примеру 1, с той разницей, что добавляли только 90% раствора II, указанного в примере 1. Время созревания продукта составляло 20 ч.
И в этом случае отфильтрованный, промытый и высушенный материал представлял собой кристаллический цеолит типа 4А и имел значение d50 2,0 мкм.
Материал обладал способностью к связыванию кальция в количестве 170 мг СаО/г цеолита.
П р и м е р 3. Поступали аналогично примеру 1 с той разницей, что загружали 140% указанного в примере 1 количества раствора I такого же разбавления.
В результате получали кристаллический материал со значением d50 1,5 мкм.
Способность к связыванию кальция в данном примере составляла 161 мг СаО/г цеолита.
П р и м е р 4. Поступали аналогично примеру 1 с той разницей, что раствор II разбрызгивали с помощью двухкомпонентного сопла (типа 772-К-1 ф-лы Шлик). При этом сжатый воздух под давлением 6 бар служил вспомогательной средой, вызывающей образование тонких капелек. По истечении времени созревания в 5 ч получали цеолит типа 4А со значением d50 2,9 мкм. Способность материала к связыванию кальция составляла 163 мг СаО/г цеолита.
П р и м е р 5 (сравнительный). Поступали аналогично примеру 1 с той разницей, что температура растворов I и II составляла 85оС. По истечении периодов дозировки и созревания получали кристаллический продукт, который помимо цеолита типа 4А со значением d50 2,8 мкм содержал также нежелательную долю содалита. Способность материала к связыванию кальция составляла 110 мг СаО/г цеолита.
(56) Заявка ФРГ N 2856209, кл. С 01 В 33/28, 1982.
Формула изобретения: 1. СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОГО ЦЕОЛИТА ТИПА 4А, включающий взаимодействие при распылении с помощью одного или нескольких сопл раствора, содержащего оксиды натрия и алюминия, с раствором, содержащим оксид натрия и диоксид кремния, гидротермальную кристаллизацию и отделение продукта, отличающийся тем, что, с целью упрощения процесса при сохранении дисперсности продукта не более 3 мкм и его высокой обменной емкости по кальцию, взаимодействие осуществляют при 70 - 80oС, распыляя раствор силиката натрия с молярными отношениями Na2O : SiO2 = 0,25 - 0,4 и H2O : Na2O = 70 - 100, в интенсивно перемешиваемый жидкий щелочной отход производства гидроксида алюминия по способу Байера с молярными отношениями Na2O : Al2O3 = 1,3 - 2,0 и H2O : Na2O = 20 - 35 и гидротермальную кристаллизацию проводят при 70 - 80oС.
2. Способ по п. 1, отличающийся тем, что распыление осуществляют в воронку перемешиваемого раствора.
3. Способ по п. 1, отличающийся тем, что распыление осуществляют в пленку перемешиваемого раствора.
4. Способ по п. 1, отличающийся тем, что распыление осуществляют с помощью сжатого воздуха.