Главная страница  |  Описание сайта  |  Контакты
СПОСОБ УПРОЧНЕНИЯ ТВЕРДОСПЛАВНОГО РЕЖУЩЕГО ИНСТРУМЕНТА НА ОСНОВЕ КАРБИДА ВОЛЬФРАМА
СПОСОБ УПРОЧНЕНИЯ ТВЕРДОСПЛАВНОГО РЕЖУЩЕГО ИНСТРУМЕНТА НА ОСНОВЕ КАРБИДА ВОЛЬФРАМА

СПОСОБ УПРОЧНЕНИЯ ТВЕРДОСПЛАВНОГО РЕЖУЩЕГО ИНСТРУМЕНТА НА ОСНОВЕ КАРБИДА ВОЛЬФРАМА

Патент Российской Федерации
Суть изобретения: Сущность изобретения: инструмент подвергают обработке ионами инертных газов в плазме тлеющего разряда, одновременно с термообработкой в режиме термоциклирования в интервале температур от 0,2 до 0,3 температуры плавления карбида вольфрама со скоростью изменения температуры 5 - 38 град/мин, при этом доза облучения составляет D=9·1021-5,4·1022 см-2 . 1 табл.
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2014958
Класс(ы) патента: B22F3/24, C23C14/48
Номер заявки: 5034998/02
Дата подачи заявки: 31.03.1992
Дата публикации: 30.06.1994
Заявитель(и): Куйбышевский политехнический институт
Автор(ы): Кричевер Е.И.; Савватимова И.Б.; Резникова Н.П.
Патентообладатель(и): Самарский государственный технический университет
Описание изобретения: Изобретение относится к области машиностроения, металлообработки, в частности к изготовлению режущего инструмента и деталей машин, работающих в условиях трения.
Известны способы повышения износостойкости инструмента имплантацией ионов.
Применение этих способов требует чрезвычайно сложного энергоемкого и дорогого оборудования. Недостатком указанных способов является то, что ими нельзя обрабатывать инструмент и детали сложного профиля с пересекающимися поверхностями, время обработки велико.
Наиболее близким по технической сущности к заявляемому способу является способ упрочнения твердосплавного режущего инструмента на основе карбида вольфрама. Этот способ включает в себя следующие технологические операции: имплантацию ионов в поверхность инструмента в плазме тлеющего разряда при 500-1400оС и его термообработку (крионную обработку в течение 0,07-2 ч).
Предложенный способ включает термообработку в режиме термоциклирования в интервале температур 0,2-0,3, температуры плавления карбида вольфрама.
При температуре Т < 0,2 Т.пл. карбида вольфрама в результате имплантации ионов инертных газов в поверхностных слоях карбидной фазы происходит дробление блоков мозаики. Размеры блоков малы, а протяженность границ блоков велика, при такой субструктуре карбида вольфрама резко интенсифицируется диффузионный износ режущего инструмента, поэтому увеличение стойкости инструмента невелико КсL = 1,3-1,6. При увеличении температуры в процессе имплантации от 0,2 Т.пл. до 0,32 Т.пл. карбидов вольфрама размер блоков в карбидной фазе увеличивается за счет развития процессов возврата. Стойкость инструмента возрастает за счет уменьшения диффузионного износа и составляет КсL = =1,6-4,8.
Использование предлагаемого способа позволяет увеличить стойкость тредосплавного инструмента на основе карбида вольфрама в 1,4-3,8 раза по сравнению с известным способом и в 1,6-10 раз по сравнению с исходным инструментом.
Целью изобретения является повышение стойкости режущего инструмента за счет уменьшения диффузионного износа.
Поставленная цель достигается тем, что для повышения стойкости и уменьшения диффузионного износа в процессе имплантации инертных газов в плазме тлеющего разряда проводят термоциклирование в интервале температур Тmax = 0,32 Тпл. карбида вольфрама Тmin = 0,2 Тпл. карбида вольфрама со скоростью охлаждения от 5оС/мин до 38оС/мин, дозе облучения D =(9˙ 1021 - 5,4 ˙1022)см-2.
Под термоциклированием понимают периодически повторяющиеся изменения температуры в процессе обработки. Источником нагрева в данном способе является энергия бомбардирующих ионов. Изменение температуры достигается за счет варьирования плотности потока падающих ионов.
Максимальная температура при термоциклировании выбрана Тmax = 0,32 Тпл. (WC) = 900оС, т.к. выше этой температуры радиационные дефекты, образовавшиеся в процессе имплантации, отжигаются, развиваются в процессе возврата, сплав разупрочняется. Минимальная температура 0,2 Тпл. (600оС) обусловлена тем, что при охлаждении твердого сплава возникают значительные остаточные напряжения, вызванные отличием в коэффициентах термического расширения различных фазовых составляющих сплава. Высокий уровень остаточных напряжений вызывает разрушение инструмента в процессе эксплуатации.
Выбор дозы определяется температурой и материалом. Экспериментально установлено, что при дозах D < 9˙ 1021 см-2 упрочнение не наблюдается. При дозах D > 5,4˙ 1022 см-2 и обычно достижимых плотностях тока время обработки велико и в результате термического воздействия сплав в процессе имплантации разупрочняется.
При числе циклов n ≅10 повышение стойкости инструмента не наблюдается. Структура сплава, микротвердость, а также стойкость инструмента не отличаются от исходных значений.
При числе циклов n > 28 стойкость инструмента более не увеличивается, зато увеличивается время и стоимость обработки.
Кроме того, проведенные эксперименты показали, что при охлаждении и нагревании образцов с градиентом температуры ≅5оС/мин эффект не наблюдается. При градиенте температур 40оС/мин часть образцов (15%) проявляет склонность к трещинообразованию. Максимальный эффект был получен при gradT = 38оС/мин (табл. 1). Таким образом, продолжительность цикла подбирали так, чтобы при максимальном эффекте используемый градиент температур не приводил к разрушению твердосплавных резцов.
Повышение стойкости происходит за счет упрочнения сплава и уменьшения диффузионного износа.
Рентгеноструктурные исследования показали, что упрочнение достигается за счет модификации субструктуры: высокой плотности дислокаций ρ= 1010 см-2 в карбиде вольфрама, причем дислокации сосредоточены внутри блоков, сами блоки крупные D > 150 нм. Размеры блоков больше, чем в исходном состоянии, т. е. при термоциклировании происходит рекристаллизация "на месте". Рекристаллизация "на месте" это далеко зашедшая полигонизация, которая состоит в формировании субзерен, которые достигают значительных размеров (10 мкм). Существуют два механизма укрупнения субзерна при полигонизации: миграция субграниц, и коалесценция субзерен. При этом контролирующим процессом при миграции субзерен является переползание дислокаций, а при коалесценции - объемная диффузия. Оба контролирующих процесса значительно интенсифицируются при повышении температуры, наличии деформации и имплантации (т.к. последняя значительно увеличивает число точечных дефектов). В нашем случае присутствуют все три явления: имплантация происходит при повышенных температурах (500-900)оС, при термоциклировании из-за большой разницы в термических коэффициентах линейного расширения фазовых составляющих твердого сплава на межфазных границах возникают значительные микронапряжения, способные вызвать пластическую деформацию в микроучастках. Известно, что если деформация происходит при повышенных температурах, то полигонизация ускоряется.
Наряду с ростом блоков под действием градиентов температуры, имплантированных ионов и вакансий, а также вызванных их наличием упругих полей напряжений, в теле блоков появляются дислокации, что и обеспечивает высокую плотность дислокаций внутри блоков.
Повышение плотности дислокаций в карбиде вольфрама по сравнению с исходным материалом, а также повышение микроoтвердителя материала после имплантации на 50% свидетельствует об упрочнении материала.
Поскольку размеры блоков у материала, прошедшего обработку по предлагаемому способу, велики, больше, чем в исходном материале, то уменьшается диффузионный износ режущего инструмента при эксплуатации.
Как уже указывалось, диффузионный износ твердосплавного инструмента зависит от величины блоков в карбиде вольфрама, чем меньше, тем больше протяженность границ блоков, интенсивней протекает диффузионный износ.
Таким образом, при термоциклировании формируется чрезвычайно благоприятная субструктура с высокой плотностью дислокаций внутри блоков и большими блоками в карбиде вольфрама. Наблюдается увеличение стойкости режущих твердосплавных пластин в 1,6-10 раз по сравнению с исходными.
Предлагаемый способ осуществляется следующим образом:
изделие нагревают в вакууме;
проводят очистку ионной бомбардировкой;
в процессе имплантации ионов аргона в плазме тлеющего разряда проводят термоциклирование в интервале температур (0,32-0,2)Тпл. карбида вольфрама со скоростью охлаждения от 5оС/мин до 38оС/мин, доза облучения D = (9 ˙1021 - 5,4˙ 1022) см-2.
Сопоставительный анализ заявляемого способа с прототипом показывает, что заявляемый способ отличается от известного тем, что в процессе имплантации проводят новую технологическую операцию: термоциклирование. Таким образом, заявляемый способ соответствует критерию изобретения "новизна".
Признаки, отличающие заявленному изобретению, не выявлены при изучении данной области техники и обеспечивают заявляемому решению соответствие критерию "существенные отличия".
П р и м е р. Неперетачиваемые режущие пластины из сплава Т15К6 обрабатывали в плазме тлеющего разряда в атмосфере аргона по известному и предлагаемому способу. Имплантировали ионы аргона с энергией Е = 400 эВ по режимам, указанным в таблице. О размерах блоков в карбидной фазе сплава судили по результатам рентгенографического анализа стойкостные испытания проводили на токарном станке 1К62, обрабатываемый материал 12ХН9Т, режим резания: число оборотов n = 315 об/мин, подача S = 0,12 мм/об, глубина резания t = 1 мм. В качестве критерия увеличения стойкости в таблице показано значение
KcL= , где Lтр.имп. - путь трения имплантированного инструмента,
Lтр.исх. - путь трения исходного инструмента.
Анализ таблицы показывает, что при термоциклировании, когда Tmin < 0,2 Тпл. (эксперимент 3) стойкость режущих пластин 1. Такая низкая стойкость вызвана высоким уровнем остаточных напряжений, возникающих из-за различия в значениях коэффициентов термического расширения карбидной и кобальтовой составляющих сплава и уменьшающих работоспособность инструмента.
В эксперименте 11 Tmax > 0,32 Тпл. карбида вольфрама в этом случае отжигаются радиационные дефекты, активно протекают процессы возврата, сплав разупрочняется, стойкость также < 1. Результаты экспериментов 8-10 показывают влияние скорости нагрева и охлаждения. Так при скорости нагрева и охлаждении 5оС/мин увеличение стойкости невелико при скорости меньшей, чем 5оС/мин, увеличения стойкости не наблюдается. При скорости нагрева и охлаждения 40оС/мин примерно 15% образцов обнаружены трещины, поэтому использование такого режима обработки нецелесообразно (таблица).
При проведении термоциклирования в интервале температур (0,32-0,2)Тпл. - (900-590)оС стойкость режущих пластин увеличивается в 1,6-10 раз по сравнению с исходными пластинами. В 12-м эксперименте доза облучения D < 1˙ 1021 (D = 9 ˙1020) недостаточна для радиационного упрочнения сплава. А в эксперименте 13 доза велика, сплав разупрочняется в результате термического воздействия.
В экспериментах 14 и 15 показано влияние числа циклов (n) на стойкость имплантированного инструмента, при n < 10 эффект незначителен, при n > 28 нет дополнительного увеличения стойкости.
При имплантации аргона в плазме тлеющего разряда по известному способу наблюдается повышение стойкости в 1,1-2,6 раза. Таким образом, использование предлагаемого способа позволяет увеличить стойкость твердосплавного режущего инструмента в 1,4-3,8 по сравнению с известным способом.
Формула изобретения: СПОСОБ УПРОЧНЕНИЯ ТВЕРДОСПЛАВНОГО РЕЖУЩЕГО ИНСТРУМЕНТА НА ОСНОВЕ КАРБИДА ВОЛЬФРАМА, включающий имплантацию ионов в поверхность инструмента в плазме тлеющего разряда и его термообработку, отличающийся тем, что имплантацию ведут ионами инертных газов одновременно с термообработкой в режиме термоциклирования в интервале температур от 0,2 до 0,3 температуры плавления карбида вольфрама со скоростью изменения температуры 5 - 38 град/мин, при этом доза облучения составляет D = 9·1021 - 5,4 · 1022 см-2.