Forbidden

You don't have permission to access /zzz_siteguard.php on this server.

РЕЛЬСОВЫЙ КОНДУКЦИОННЫЙ ЭЛЕКТРОМАГНИТНЫЙ УСКОРИТЕЛЬ ТВЕРДЫХ ТЕЛ - Патент РФ 2027971
Главная страница  |  Описание сайта  |  Контакты
РЕЛЬСОВЫЙ КОНДУКЦИОННЫЙ ЭЛЕКТРОМАГНИТНЫЙ УСКОРИТЕЛЬ ТВЕРДЫХ ТЕЛ
РЕЛЬСОВЫЙ КОНДУКЦИОННЫЙ ЭЛЕКТРОМАГНИТНЫЙ УСКОРИТЕЛЬ ТВЕРДЫХ ТЕЛ

РЕЛЬСОВЫЙ КОНДУКЦИОННЫЙ ЭЛЕКТРОМАГНИТНЫЙ УСКОРИТЕЛЬ ТВЕРДЫХ ТЕЛ

Патент Российской Федерации
Суть изобретения: Изобретение относится к прямому преобразованию электрической энергии в механическую (кинетическую энергию метаемого тела), в частности к реализации способа электромагнитного разгона твердых тел в рельсовых ускорителях кондукционного типа. Цель изобретения - увеличение скорости метания твердых тел. В рельсовом кондукционном электромагнитном ускорителе твердых тел два индуктивно связанных электрических контура помещены в силовой каркас и изолированы от него. Внутренний электрический контур образован парой электродов 1, расположенных продольно, и токовым якорем 2, причем электроды 1 подключены к системе электропитания 10 с выходной части ускорителя, что гарантирует исключение образования паразитных электрических дуг в следе токового якоря и снятие ограничения на время электромагнитного ускорения. Внешний электрический контур образован электродами 4 и закорачивающей перемычкой 6, закорачивающей электроды в выходной части ускорителя. Электроды 4 внешнего контура подключены к системе электропитания 9 с входной части ускорителя. 2 ил.
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2027971
Класс(ы) патента: F41B6/00
Номер заявки: 4535945/23
Дата подачи заявки: 22.10.1990
Дата публикации: 27.01.1995
Заявитель(и): Институт высоких температур РАН
Автор(ы): Лебедев Е.Ф.; Осташев В.Е.; Ульянов А.В.; Фатьянов О.В.
Патентообладатель(и): Научно-исследовательский центр теплофизики импульсных воздействий Научного объединения "ИВТАН" РАН
Описание изобретения: Изобретение относится к прямому преобразованию электрической энергии в механическую (кинетическую энергию метаемого тела), в частности к реализации способа электромагнитного разгона твердых тел в рельсовых ускорителях кондукционного типа.
Известен рельсовый кондукционный электромагнитный ускоритель твердых тел, содержащий помещенные в силовой корпус электроизоляционные стенки и электрический контур, образованный парой продольно расположенных параллельных электродов, закороченных токовым якорем и подключенных с выходной части ускорителя к системе электропитания [1].
Прототипом настоящего изобретения является рельсовый кондукционный электромагнитный ускоритель твердых тел, содержащий помещенные в силовой корпус электроизоляционные стенки и два индуктивно связанных электрических контура, образованных внутренней и внешней парами продольно расположенных параллельных электродов, подключенных к независимым системам электропитания, причем внешняя пара электродов закорочена в выходной части ускорителя и подключена к системе электропитания [2].
Недостатком данного устройства является то, что штатный эффективный режим протекания тока в канале ускорителя является абсолютно неустойчивым. При этом возможность увеличения длительности его существования сопряжена с более высоким уровнем внутриканального электрического напряжения при фиксированном ускорении или меньшей величиной электромагнитной силы при заданной величине магнитного поля в пространстве за якорем, определяемой технической прочностью конструкции.
Целью изобретения является увеличение скорости метания твердых тел.
Указанная цель достигается тем, что в рельсовом кондукционном электромагнитном ускорителе твердых тел, содержащем помещенные в силовой корпус электроизоляционные стенки и два индуктивно связанных электрических контура, образованных внутренней и внешней парами продольно расположенных параллельных электродов, подключенных к независимым системам электропитания, причем внешняя пара электродов закорочена в выходной части ускорителя и подключена к системе электропитания, подключение электродов внутренней пары электродов к системе электропитания выполнено с выходной части ускорителя, а параметры системы электропитания и геометрические характеристики контура выбраны из условия:
0 < < , где Lв', Lн' - погонные индуктивности соответственно внутреннего и внешнего контуров;
Iв, Iн - электрические токи в контурах;
hв, hн - расстояние между электродами каждого контура.
На фиг. 1 показан рельсовый кондукционный электромагнитный ускоритель в поперечном сечении его выходной части в области закоротки-перемычки между электродами внешнего контура; на фиг. 2 - электрическая схема подключения контуров к системам электропитания.
Рельсовый кондукционный электромагнитный ускоритель твердых тел содержит внутреннюю пару электродов 1, продольно расположенных параллельно друг другу и образующих с токовым якорем 2 внутренний электрический контур ускорителя.
Электроды 1 внутренней пары электроизолированы друг от друга электроизоляционными стенками 3, а от электродов 4 внешней пары - электроизоляционными прокладками 5. Внешний контур ускорителя образуют электроды 4 и перемычка 6, закорачивающая электроды в выходной части ускорителя. Сборка электродов 1 и 4 и диэлектриков 3 и 5 при необходимости электроизолирована от силового корпуса 7, в который она помещена, диэлектрическими прокладками 8. Каждая пара электродов 1 и 4 подключена к независимой системе электропитания, при этом электроды 4 внешнего контура подключены к системе электропитания 9 с входной части ускорителя, а электроды 1 внутреннего контура - к своей системе электропитания 10 с выходной части ускорителя. Соседние электроды внешнего и внутреннего контуров, располагаемые по одну сторону от продольной оси ускорителя, подключены к одинаковому полюсу систем электропитания 9 и 10, что обеспечивает протекание по контурам электрических токов противоположного направления.
Устройство работает следующим образом.
После сборки пакета электродов 1 и 4, диэлектриков 3, 5, 8 и перемычки 6 его помещают в силовой корпус 7 и перемещением стенок корпуса 7 или иным способом создают предварительное напряжение конструкции. Затем в образовавшийся между электродами 1 внутреннего контура и боковыми стенками 3 канал помещают ускоряемое тело - якорь 2 или ускоряемое тело с якорем 2.
Затем производят разряд запасенной в системах электропитания 9 и 10 электрической энергии соответственно во внешний и внутренний электрические контуры ускорителя. При взаимодействии тока Iв, протекающего через якорь 2, с поперечным магнитным полем Вн внешнего электрического контура возникает электромагнитная сила Fэм, ускоряющая якорь 2, а значит и метаемое тело.
Подключение внутреннего контура к системе электропитания в выходной части ускорителя гарантирует исключение образования паразитных электрических дуг в следе токового якоря и снятие ограничения на время электромагнитного ускорения. В данном случае максимальная скорость вылета тела составит:
vmax = dτ, где τэф - время штатного ускорения;
Fэмmax - максимальная электромагнитная сила;
τ - время электромагнитного ускорения.
Для случая равноускоренного движения:
vmax = τэф > τo, где , τo - максимальная электромагнитная сила и время электромагнитного ускорения прототипа.
Формула изобретения: РЕЛЬСОВЫЙ КОНДУКЦИОННЫЙ ЭЛЕКТРОМАГНИТНЫЙ УСКОРИТЕЛЬ ТВЕРДЫХ ТЕЛ, содержащий помещенные в силовой корпус электроизоляционные стенки и два индуктивно связанных электрических контура, образованных внутренней и внешней парами продольно расположенных параллельных электродов, подключенных к независимым системам электропитания, причем внешняя пара электродов закорочена в выходной части ускорителя и подключена к системе электропитания, отличающийся тем, что, с целью увеличения скорости метания твердых тел, подключение электродов внутренней пары электродов к системе электропитания выполнено с выходной части ускорителя, а параметры системы электропитания и геометрические характеристики контура выбраны из условия

где - погонные индуктивности соответственно внутреннего и внешнего контуров;
Iв, Iн - электрические токи в контурах;
hв, hн - расстояние между электродами каждого контура.