Forbidden

You don't have permission to access /zzz_siteguard.php on this server.

СПОСОБ УПРАВЛЕНИЯ ИСПОЛНИТЕЛЬНЫМ ЭЛЕМЕНТОМ ПОЗИЦИОНИРУЮЩЕГО МЕХАНИЗМА ДИСКРЕТНОГО ДЕЙСТВИЯ - Патент РФ 2028716
Главная страница  |  Описание сайта  |  Контакты
СПОСОБ УПРАВЛЕНИЯ ИСПОЛНИТЕЛЬНЫМ ЭЛЕМЕНТОМ ПОЗИЦИОНИРУЮЩЕГО МЕХАНИЗМА ДИСКРЕТНОГО ДЕЙСТВИЯ
СПОСОБ УПРАВЛЕНИЯ ИСПОЛНИТЕЛЬНЫМ ЭЛЕМЕНТОМ ПОЗИЦИОНИРУЮЩЕГО МЕХАНИЗМА ДИСКРЕТНОГО ДЕЙСТВИЯ

СПОСОБ УПРАВЛЕНИЯ ИСПОЛНИТЕЛЬНЫМ ЭЛЕМЕНТОМ ПОЗИЦИОНИРУЮЩЕГО МЕХАНИЗМА ДИСКРЕТНОГО ДЕЙСТВИЯ

Патент Российской Федерации
Суть изобретения: Использование: при создании систем управления магнитострикционными механизмами для прецизионных перемещений. Сущность: при позиционировании посредством магнитострикционного исполнительного элемента на него воздействует основным продольным магнитным полем в виде ступени и дополнительным продольным магнитным полем в виде ступени того же знака, запаздывающим на половину периода свободных колебаний позиционирующего механизма. При возвращении в исходное положение до снятия основного продольного поля снимают дополнительное продольное поле и одновременно подают импульс продольного поля, противоположного по знаку и равного по величине основному продольному полю длительностью, равной четверти периода свободных колебаний позиционирующего механизма. 4 ил.
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2028716
Класс(ы) патента: H02N2/00, H01L41/09
Номер заявки: 4934872/25
Дата подачи заявки: 05.05.1991
Дата публикации: 09.02.1995
Заявитель(и): Уфимский государственный авиационный технический университет
Автор(ы): Лебедев В.А.; Тлявлин А.З.; Кусимов С.Т.
Патентообладатель(и): Уфимский государственный авиационный технический университет
Описание изобретения: Изобретение относится к электротехнике и автоматике и может быть использовано при создании систем управления магнитострикционными механизмами для прецизионных перемещений.
Известен способ управления пьезомагнитным двигателем, заключающийся в формировании и снятии импульсов заданной величины источником напряжения [1] .
Недостаток способа в том, что для изменения величины перемещения меняют величину управляющего воздействия, при этом наблюдается высокая колебательность пьезомагнитного стержня.
Наиболее близким к заявляемому способу, выбранному за прототип, является способ управления пьезодвигателем, заключающийся в формировании и снятии ступени дополнительного продольного управляющего поля, запаздывающего на половину периода свободных колебаний пьезодвигателя от ступени основного продольного управляющего поля [2].
Недостаток способа заключается в том, что использовать его полностью для магнитострикционного механизма невозможно, поскольку, обладая четностью магнитомеханической характеристики при возвращении магнитострикционного механизма в исходное положение, последний будет колебаться с двойной частотой и двойной амплитудой.
Цель изобретения - уменьшение колебательности при возвращении в исходное положение.
На фиг. 1 схематически изображен продольный разрез дискретного магнитострикционного механизма; на фиг.2 - следующие совмещенные зависимости; Hпрод1(t) - временная зависимость основного магнитного поля, здесь BCML - ступень основного магнитного поля; Нпрод2(t) - временная зависимость дополнительного магнитного поля, здесь DEFG - ступень, а GKLM - импульс длительности Тм/4 дополнительного магнитного поля; на фиг.3 - результирующая от влияния основного и дополнительного продольных полей петля OPAO магнитомеханического гистерезиса Δ (Нпрод); на фиг.4 - временная зависимость процесса позиционирования и возвращения в исходное положение магнитострикционного механизма Δ (t).
Устройство (фиг. 1) состоит из магнитострикционного элемента-трубки 1, намагничивающей секции 2, размещенной внутри магнитострикционной трубки, основной 3 и дополнительной 4 продольных обмоток, а также нагрузки 5.
Дискретный магнитострикционный механизм, реализующий способ управления, работает следующим образом.
При позиционировании нагрузки формируют ступень поля с помощью основной обмотки намагничивания, а затем с запаздыванием на половину периода свободных колебаний магнитострикционного механизма Тм/2 формируют ступень поля с помощью дополнительной продольной обмотки намагничивания, при этом основной Ф1 и дополнительный Ф2 магнитные потоки как в намагничивающей секции, так и в магнитострикционной трубке имеют одинаковые направления. Перемещение нагрузки происходит безколебательно (фиг.4). При возвращении в исходное положение формируют импульс дополнительного продольного поля длительности Тм/4, противоположного по знаку и равного по величине ступени основного поля. На время Тм/4 основной Ф1 и дополнительный Ф2 магнитные потоки противоположны друг другу. Магнитострикционный элемент-трубка начнет возвращаться в исходное положение. Снятие ступени основного магнитного поля и импульса дополнительного магнитного поля не приводит к колебательности магнитострикционного механизма из-за взаимного уничтожения переходных процессов (фиг.4). Для изменения величины перемещения необходимо пропорционально изменять величину ступени основного и ступени и импульса дополнительного магнитных полей.
Способ управления состоит в следующем.
Если для формирования ступени основного продольного магнитного поля требуется двухуровневый источник тока, то для формирования ступени и импульса дополнительного магнитного поля необходим трехуровневый источник тока.
По фронту BC (фиг.2) ступени BCML основного продольного магнитного поля Нпрод1 магнитострикционный элемент должен перемещаться с перерегулированием OQТIRP, при этом рабочая точка магнитомеханической петли Δ (Нпрод) должна двигаться по кривой OP с колебанием вокруг т.Р. По фронту DE ступени DEFG дополнительного магнитного поля Нпрод2 элемент должен перемещаться с перерегулированием QT'I'R'A', а рабочая точка должна двигаться по кривой PA и осуществлять колебание вокруг т.A. В результате сдвига фронтов ступени основного и дополнительного магнитных полей на Тм/2 суммарное перерегулирование прекратится за время Тм, а магнитострикционный механизм будет осуществлять процесс позиционирования нагрузки по кривой OQZA'. Срез FG ступени дополнительного магнитного поля за четверть периода свободных колебаний до среза ступени ML основного магнитного поля и установление на эту четверть периода равных по величине и противоположных по знаку величин продольных магнитных полей приводит к перемещению магнитострикционного механизма по кривой A't3 и перемещению рабочей точки по кривой AO. В результате одновременного снятия до нуля ступени ML основного магнитного поля и импульса LM дополнительного магнитного поля происходит взаимогашение колебаний и магнитострикционный механизм переместится в исходное положение, соответствующее т.O по кривой t3XO без перерегулирования.
Таким образом, представленный способ управления дискретным магнитострикционным механизмом позволяет возвращать нагрузку в исходное положение безколебательно за счет формирования на время Тм/4 основного и дополнительного магнитных полей противоположных по знаку и равных по величине магнитных потоков Ф1 = |Ф21| .
Формула изобретения: СПОСОБ УПРАВЛЕНИЯ ИСПОЛНИТЕЛЬНЫМ ЭЛЕМЕНТОМ ПОЗИЦИОНИРУЮЩЕГО МЕХАНИЗМА ДИСКРЕТНОГО ДЕЙСТВИЯ, заключающийся в том, что на исполнительный элемент воздействуют основным продольным полем в виде ступени и дополнительным продольным полем в виде ступени того же знака, запаздывающим на половину периода свободных колебаний позиционирующего механизма от основного продольного поля, отличающийся тем, что, с целью уменьшения колебательности на стадии возвращения в исходное положение при использовании в качестве исполнительного элемента магнитострикционного элемента, на время, равное четверти периода свободных колебаний позиционирующего механизма, до снятия основного продольного поля снимают дополнительное продольное поле в виде ступени и воздействуют на исполнительный элемент импульсом дополнительного продольного поля, противоположного по знаку и равного по величине основному продольному полю.