Главная страница  |  Описание сайта  |  Контакты
ПОЛЯРИМЕТР ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ САХАРА В МОЧЕ
ПОЛЯРИМЕТР ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ САХАРА В МОЧЕ

ПОЛЯРИМЕТР ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ САХАРА В МОЧЕ

Патент Российской Федерации
Суть изобретения: Использование: поляриметр относится к оптическому приборостроению. Сущность: в поляриметре, содержащем источник света, диафрагму, коллиматор, светофильтр, фокусирующую линзу, простой и составной поляризационные фильтры, между которыми установлена кювета с исследуемой средой, составной поляризационный фильтр закреплен на якоре вибратора и выполнен в виде двух примыкающих по линии встык друг к другу частей поляризационных фильтров, плоскости пропускания которых составляют прямой угол между собой и углы +45° и -45° по отношению к плоскости пропускания простого поляризационного фильтра, фотоприемник, усилитель, устройство сравнения, регулирующий элемент, источник питания. Непосредственно перед кюветой установлена телескопическая система, составной поляризационный фильтр с электромагнитным вибратором установлены также перед кюветой в фокальной плоскости телескопической системы так, что в состоянии покоя якоря вибратора средняя линия проектируемого изображения диафрагмы совпадает с линией стыка частей составного поляризационного фильтра. 3 ил.
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

   С помощью Яндекс:  

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2029258
Класс(ы) патента: G01J4/04
Номер заявки: 4942683/25
Дата подачи заявки: 04.06.1991
Дата публикации: 20.02.1995
Заявитель(и): Центральное конструкторское бюро "Фотон"
Автор(ы): Пеньковский А.И.
Патентообладатель(и): Центральное конструкторское бюро "Фотон"
Описание изобретения: Изобретение относится к оптико-механическим приборам, которые предназначены для исследования состава и структуры вещества оптическими методами, а конкретнее - к поляриметричеcким приборам для измерения оптичеcкой активности сахара в растворах, например концентрации сахара в моче при диагностике и лечении сахарного диабета.
Основными требованиями, предъявляемыми к таким устройствам, являются достаточная точность измерения не хуже ± 0,1% по концентрации в диапазоне 0,1 - 8%, портативность и низкая стоимость, которую можно достичь в случае простоты конструкции. Среди простых поляриметров наибольшее распространение получили визуальные поляриметры П-161, СМ-2, СМ-3, с помощью которых измеряют угол поворота плоскости поляризации Δα исследуемой средой с известным удельным вращением плоскости поляризации [α]λ , а затем определяют процентное содержание сахара С в растворе по формуле
С = 100 Δα [α]λ -1˙L-1, где L - длина кюветы с исследуемой средой;
λ - длина волны света.
Существенными недостатками визуальных поляриметров являются низкая точность, быстрая утомляемость оператора и вызванные этим дополнительные субъективные погрешности измерений.
Существующие фотоэлектрические поляриметры [1] более точные, строятся по компенсационной схеме и содержат источник света, конденсор, диафрагму, коллиматор, неподвижный и вращающийся совместно с лимбом углоизмерительного устройства поляризационный фильтр, установленные между ними кювету с исследуемой средой, магнитооптический модулятор Фарадея, фотоприемник, усилитель и реверсивный двигатель, связанный с подвижным поляризационным фильтром. Иногда оба поляризационных фильтра устанавливают неподвижно, но между ними помещают клиновой или магнитооптический компенсаторы, управляемые следящими системами [1] . Основными недостатками таких фотоэлектрических поляриметров являются сложность конструкции, высокая стоимость, большие габариты и вес.
Упрощение, удешевление конструкции и повышение точности измерений достигаются в случае использования некомпенсационных схем. Так, наиболее близким прототипом является поляриметр для измерения концентрации сахара в моче, описанный в [2], который содержит оптически связанные источник излучения, диафрагму, коллиматор, светофильтр, фокусирующую линзу, простой и составной поляризационные фильтры, между которыми установлена кювета с исследуемой средой. Составной поляризационный фильтр установлен после кюветы на якоре электромеханического вибратора. Якорь поддерживается плоскими пружинами, плоскости которых параллельны друг другу. Составной поляризационный фильтр выполнен в виде двух примыкающих по линии встык друг другу частей поляризационных фильтров, плоскости пропускания которых составляют прямой угол между собой и углы +45о и -45о по отношению к плоскости пропускания простого поляризационного фильтра. Составной поляризационный фильтр установлен после кюветы в фокальной плоскости заднего отрезка проекционной системы, которая установлена до кюветы. Известное устройство содержит также фотоприемник, усилитель, устройство сравнения, регулирующий элемент, источник питания.
Существенными недостатками известного поляриметра для измерения концентрации сахара в моче является то, что при работе с мутной, рассеивающей свет средой (моча) невозможно получить резкое изображение диафрагмы в плоскости составного поляризационного фильтра, а положение изображения диафрагмы относительно линии стыка двух частей составного поляризационного фильтра зависит от величины клиновидности кюветы и угла поворота ее относительно оптической оси. Неконтролируемое смещение диафрагмы и его рассеяние приводят к появлению паразитной модуляции светового потока, что существенно снижает точность измерений и его достоверность.
Причем, если клиновидность кюветы можно нейтрализовать за счет установки кюветы в одном и том же положении, например, с помощью фиксаторов и т. д. , то эффект рассеяния трудно устраним даже путем фильтрации исследуемой среды.
Целью изобретения является повышение точности измерений.
Цель достигается тем, что в конструкции поляриметра, содержащей оптически связанные источник излучения, диафрагму, коллиматор, светофильтр, простой и составной поляризационные фильтры, между которыми установлена кювета с исследуемой средой, электромеханический вибратор с якорем, причем составной поляризационный фильтр размещен на якоре электромеханического вибратора с параллельными плоскими пружинами, установленными в контакте с якорем, и выполнен в виде двух примыкающих по линии встык друг к другу частей поляризационных фильтров, плоскости пропускания которых составляют прямой угол между собой и углы +45о и -45о по отношению к плоскости пропускания простого поляризационного фильтра, фотоприемник, последовательно соединенные усилитель, устройство сравнения, соединенный с источником излучения регулирующий элемент и источник питания, перед кюветой установлена линза, образующая с фокусирующей линзой телескопическую систему, составной поляризационный фильтр с электромеханическим вибратором установлен перед линзой в фокальной плоскости телескопической системы так, что в состоянии покоя якоря вибратора средняя линия проектируемого телескопической системой изображения диафрагмы совпадает с линией стыка частей составного поляризационного фильтра.
На фиг.1 показана структурная схема одного из возможных вариантов предлагаемого поляриметра для измерения концентрации сахара в моче; на фиг.2 - разрез А-А на фиг. 1; на фиг.3 показана кривая зависимости интенсивности света от угла поворота плоскости поляризации света, иллюстрирующая работу предлагаемого устройства.
Поляриметр для измерения концентрации сахара в моче содержит источник 1 излучения (фиг.1), диафрагму 2, коллиматор 3, светофильтр 4, простой поляризационный фильтр 5 и составной поляризационный фильтр 6, между которыми установлена кювета 7 с исследуемой средой 8. Составной поляризационный фильтр 6 установлен перед кюветой 7 на якоре 9 электромеханического вибратора с параллельными плоскими пружинами 10, 11, поддерживающими якорь 9. Составной поляризационный фильтр 6 выполнен в виде двух примыкающих по линии встык друг к другу частей поляризационных фильтров 12, 13 (фиг..2), плоскости пропускания которых составляют прямой угол между собой и углы +45о и -45о по отношению к плоскости пропускания простого поляризационного фильтра 5 (фиг. 1). На чертеже в качестве примера показан один из возможных вариантов ориентации поляризационных фильтров, т.е. плоскость пропускания простого фильтра 5 совпадает с плоскостью чертежа, а плоскости пропускания частей 12, 13 составного поляризационного фильтра 9 составляют соответственно углы +45о и -45о с плоскостью чертежа. Перед кюветой 7 установлена телескопическая система в виде двух линз 14, 15.
Составной поляризационный фильтр 6 установлен в фокусе телескопической системы, т.е. в фокусе линзы 14, так, что в состоянии покоя якоря 9 вибратора средняя линия проектируемого линзами 3, 14 изображения 16 диафрагмы 2 (фиг. 2) совпадает с линией стыка частей 12, 13 составного поляризационного фильтра 6. На якоре 9 укреплена пластинка 17 из магнитомягкого материала, а вблизи ее с небольшим зазором на корпусе закреплен магнитопровод 18 с зазором, выполненный также из магнитомягкого материала. На магнитопровод 18 насажена катушка 19, которая через диод 20 подключена в сеть переменного тока.
После простого поляризационного фильтра 5 установлены собирающая линза 21 и фотоприемник 22. Фотоприемник 22 через разделительную емкость 23 связан с усилителем 24, у которого коэффициент усиления регулируется при настройке. Усилитель 24 связан с индикатором 25. Одновременно фотоприемник 22 соединен с первым входом устройства 26 сравнения, к второму входу которого подключен эталонный потенциал постоянной амплитуды Uo. Выход устройства 26 сравнения соединен с регулируемым элементом 27, который включен последовательно между источником 28 тока и источником 1 излучения.
Предлагаемый поляриметр для измерения концентрации сахара в моче работает следующим образом.
Лучи от источника 1 излучения проходят щель 2, коллимационную линзу 3 и в виде параллельных лучей проходят фильтр 4. Далее квазимонохроматический свет с максимумом спектральной плотности λmax=589 нм проходит первую линзу 14 телескопической системы, составной поляризационный фильтр 6, вторую линзу 15 телескопической системы, кювету 7 с исследуемой средой 8, поляризационный фильтр 5, линзу 21 и воспринимается фотоприемником 22. При этом проекционная система, состоящая из линз 3, 14, переносит изображение щели 2 в плоскость составного поляризационного фильтра 6, который установлен так, что если диод 20 (фиг.2) обесточен и якорь 9 находится в покое, то средняя линия изображения щели 2 в виде плоскости света 16 совпадает с линией стыка частей 12, 13 составного поляризационного фильтра. С момента включения поляриметра в сеть переменный ток в виде импульсов одной полярности частоты сети ω проходит через катушку 19 и в зазоре магнитопровода 18 периодически также с частотой ω возникает магнитное поле, которое увлекает пластину 17 и якорь 9 (фиг.1) совершает колебательное движение с частотой возбуждения линии стыка частей составного поляризационного фильтра 6. При этом неполяризованный свет периодически также с частотой ω попадает то на левую часть 12 (фиг. 2), то на правую часть 13 составного поляризационного фильтра 6 (фиг. 1) и после прохождения этого фильтра становится линейно поляризованным светом, плоскость поляризации которого периодически скачком меняется от -45о до +45о. Линза телескопической системы изотропна. Поэтому линейно поляризованный свет с периодически измеряющимся азимутом плоскости поляризации проходит ее без каких-либо заметных изменений и проходит кювету 7 с исследуемой средой 8.
Если исследуемая среда 8 не обладает оптической активностью, т.е. не содержит сахара, то квазимонохроматический линейно поляризованный свет с переменным азимутом -45о или +45о проходит исследуемую среду 8 без изменений. Следовательно, интенсивность света I, воспринимаемая фотоприемником 22, после каждой смены азимута с α= -45о на α = + 45о остается постоянной и равной примерно половине интенсивности Iо падающего на составной поляризационный фильтр 6 света, что на кривой Малюса, отображающей зависимость интенсивности света I от азимута вращения плоскости поляризации α (фиг.3), можно отобразить точками 1, 2. Если исследуемая среда 8 (фиг.1) содержит сахар, т.е. обладает оптической активностью, то в зависимости от концентрации сахара С на выходе кюветы 7 и исследуемой среды 8 азимуты α линейной поляризации -45о и +45о изменяются в одну и ту же сторону на величину Δα = 0,01˙С˙L˙[α] D, где [α]D = =52,6о - удельное вращение плоскости поляризации сахара для рабочей длины волны λ= 589 нм.
В этом случае после прохождение кюветы 7 линейно поляризованный свет будет периодически скачком изменяться по азимуту от -45о + Δα до + 45о+ Δα и на выходе поляризационного фильтра 5 интенсивности света в процессе скачкообразных изменений азимута будут различными, что на фиг.3 отображено точками 3, 4, т. е. в один полупериод интенсивность света уменьшается на величину ΔI= Iosin2Δα (точка 3, фиг.3), а во второй - на ту же величину увеличивается (точка 4, фиг.3). В результате в спектре сигнала фотоприемника 22 (фиг.1) кроме постоянной составляющей, пропорциональной интенсивности света I≈0,5 Io (точка 5, фиг.3), будет присутствовать переменная составляющая частоты ω , которая пропорциональна интенсивности света ΔI (кривая 6, фиг.3). Переменная составляющая сигнала отфильтровывается с помощью емкости 23 (фиг.1), усиливается усилителем 24 и ее амплитуда измеряется, например, цифровым индикатором 25. Показания концентрации индикатором 25 согласно зависимости С = 100Δα/[α ]D L линейно связаны с длиной L кюветы 7 и с величиной измерения азимута линейной поляризации Δα . Например, при L = 95 мм С = 2Δα . Цифровой индикатор имеет цифровое табло и выход для подключения цифропечатающих устройств. Для устранения влияния поглощения света τ исследуемой среды на результаты измерений концентрации С постоянная составляющая сигнала фотоприемника 22 подается на один вход сравнивающего устройства 26, а эталонный (опорный) потенциал подается на второй вход устройства 26. Разница этих потенциалов подается на регулирующий элемент 27, который регулирует величину тока лампы 1 от источника 28 и тем самым регулирует интенсивность излучения I так, что постоянная составляющая сигнала фотоприемника 22 в независимости от поглощения τ среды всегда равна установленной заранее величине, которую принимают за единицу и устанавливают при калибровке поляриметра. Такая автоматическая регулировка единичного значения постоянной составляющей обеспечивает пропорциональность Δl= 2Δα = C, достаточную точность и простоту измерений концентрации сахара в моче.
Предлагаемый поляриметр проще и точнее существующих фотоэлектрических поляриметров не только тем, что не содержит сложных углоизмерительных устройств, компенсаторов, дорогих поляризационных призм, но и тем, что смена азимута линейной поляризации с -45о на +45о проводится до кюветы 7 с исследуемой средой 8. Установка элементов телескопической системы 14, 15 составного поляризационного фильтра 6 перед кюветой 7 исключает возможность появления паразитной модуляции света, вызванной клиновидностью защитных стекол кюветы и некоторым рассеянием исследуемой средой 8. Следовательно, достигается полезный эффект в виде повышения точности и упрощения конструкции, так как снимаются жесткие требования к конструкции кюветы 7 по клиновидности и не требуется тщательной фильтрации исследуемой среды 8.
Формула изобретения: ПОЛЯРИМЕТР ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ САХАРА В МОЧЕ, содержащий оптически связанные источник излучения, диафрагму, коллиматор, светофильтр, фокусирующую линзу, простой и составной поляризационные фильтры, между которыми установлена кювета с исследуемой средой, электромеханический вибратор с якорем, причем составной поляризационный фильтр размещен на якоре электромеханического вибратора с параллельными плоскими пружинами, установленными в контакте с якорем, и выполнен в виде двух примыкающих по линии встык одна к другой частей поляризационных фильтров, плоскости пропускания которых составляют прямой угол между собой и углы + 45o и - 45o по отношению к плоскости пропускания простого поляризационного фильтра, фотоприемник последовательно соединен усилитель, устройство сравнения, соединенный с источником излучения регулирующий элемент и источник питания, отличающийся тем, что, с целью повышения точности измерений по ходу излучения, перед кюветой установлена линза, образующая с фокусирующей линзой телескопическую систему, составной поляризационной фильтр с электромеханическим вибратором установлен перед линзой с фокальной плоскости телескопической системы так, что в состоянии покоя якоря вибратора средняя линия проектируемого телескопической системой изображения диафрагмы совпадает с линией стыка частей составного поляризационного фильтра.