Главная страница  |  Описание сайта  |  Контакты
СПОСОБ ПЕРЕРАБОТКИ ЛОМА ВОЛЬФРАМСОДЕРЖАЩИХ МЕТАЛЛОКЕРАМИЧЕСКИХ КОМПОЗИЦИЙ
СПОСОБ ПЕРЕРАБОТКИ ЛОМА ВОЛЬФРАМСОДЕРЖАЩИХ МЕТАЛЛОКЕРАМИЧЕСКИХ КОМПОЗИЦИЙ

СПОСОБ ПЕРЕРАБОТКИ ЛОМА ВОЛЬФРАМСОДЕРЖАЩИХ МЕТАЛЛОКЕРАМИЧЕСКИХ КОМПОЗИЦИЙ

Патент Российской Федерации
Суть изобретения: Изобретение относится к способу переработки лома вольфрамсодержащих металлокерамических композиций на связке из железа или сплавов на основе железа, анодным растворением лома. Сущность: анодное растворение проводят в растворах серной кислоты концентрации 2,0 2,2 моль/л, при комнатной температуре и при анодной плотности тока 2,5 3,5 A/дм2
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2048561
Класс(ы) патента: C22B34/36, C22B7/00
Номер заявки: 5037180/02
Дата подачи заявки: 14.04.1992
Дата публикации: 20.11.1995
Заявитель(и): Санкт-Петербургский государственный университет
Автор(ы): Красиков Б.С.; Николаева Л.А.; Яковлева С.В.
Патентообладатель(и): Санкт-Петербургский государственный университет
Описание изобретения: Изобретение относится к области утилизации отходов цветных металлов, а именно к применению электрохимических методов для утилизации и концентрирования ценных компонентов, содержащихся в ломе вольфрамсодержащих металлокерамических композиций. Область применения предприятия вторцветмета.
Данный способ может быть использован для извлечения вольфрамсодержащей компоненты из металлокерамических изделий на связке из железа или сплавов на железной основе любого целевого назначения. В качестве примера рассмотрен лишь один из видов отходов лом шарошечных долот. Отработанные шарошечные долота представляют собой металлокерамические изделия, выполненные в виде диска диаметром около 70 мм и толщиной около 12 мм, имеющие в средней части сквозное отверстие диаметром 30 мм. Внутренняя часть диска выполнена из чистого железа, а остальная часть представляет собой композицию из карбида вольфрама в смеси с чистым вольфрамом, взятой в количестве 35-42 мас. спрессованную со сплавом, содержащим, мас. 90,3-89 железа; 9-9,5 меди и 0,7-1,5 никеля.
Вольфрамосодержащая компонента состоит из 3,7-4,0 мас. углерода, а в числе других примесей к вольфраму имеется железо (до 0,15%) и кремний (до 0,07% ), выполнена эта компонента лома в виде зерен неправильной формы, средним размером отдельного зерна 2-3 мм. Следует также указать, что данный способ может использоваться и для извлечения ванадийсодержащих компонент из металлокерамических изделий на связке из железа или сплавов железа.
В то время, как внутренняя (железная) часть диска может быть легко удалена механическим путем (токарной обработкой и т.п.), оставшаяся часть, содержащая карбид вольфрама и вольфрам совместно с трехкомпонентным сплавом (железо-медь-никель) следует подвергнуть переработке с одновременным разделением компонентов, при этом наиболее ценная компонента (вольфрамсодержащая) должна быть практически полностью сохранена для дальнейшего использования.
Известно, что для переработки тугоплавких материалов (к их числу относятся вольфрамсодержащие материалы) используется ряд приемов:
а) отходы металлов или сплавов растворяются в аммиачном или щелочном электролите, помещая их в качестве анодов. При этом с выходом по току, близким к 100% вольфрам переходит в раствор в виде вольфраматов, но при этом карбиды вольфрама полностью разрушаются. Другим недостатком метода является то, что при переработке этим способом композиций, богатых железом, в аммиачных или щелочных средах образуется гидроокись железа, приводящая к пассивации анодно растворяющихся отходов и сильно затрудняющая этот процесс;
б) другой метод основан на химическом взаимодействии кусковых отходов, содержащих вольфрам (брак производства, неисправные части инструмента и т.п. ) с селитрой (нитратом натрия) при 800-900оС в течение часа, после чего выщелачиванием охлажденного плава водой получают растворы солей, в которых вольфрам содержится в виде вольфрамата натрия; растворы подвергают дальнейшей переработке с целью получения чистого вольфрама. Недостатки метода необходимость высокотемпературной переработки и разрушение карбида вольфрама;
в) при извлечении вольфрама из пыли, образующейся при заточке твердосплавного инструмента, используется метод химического растворения в серной кислоте при 60-80оС, требующий значительного времени. Однако в ходе такой переработки часть вольфрама теряется за счет перехода в раствор кислоты, и утилизация этих потерь возможна лишь при переходе к чистому вольфраму. Кроме того, известно, что карбиды вольфрама растворяются в кислородсодержащих кислотах (серной, азотной, хлорной), причем скорость растворения увеличивается при повышении как концентрации кислоты, так и температуры раствора.
Что касается других компонентов, входящих в состав лома шарошечных долот, то известно, что, сплавы железо-никель или железо-медь будут растворяться в разбавленных кислотах, причем скорость растворения будет тем выше, чем меньше легирующего металла (никеля, меди) содержится в сплаве (но до известного предела).
Из анализа литературных источников вытекает, что наиболее близким по технической сущности является способ, включающий анодное растворение вольфрамсодержащего лома.
Однако недостатками этого метода является, во-первых, полное разрушение вольфрамсодержащей компоненты, а следовательно, необходимость повторного извлечения вольфрама и последующих переходов к металлическому вольфраму и далее к карбидами вольфрама. Во-вторых, образование гидроокиси железа, пассивирующее анодно обрабатываемый материал, что приводит к нарушениям в нормальном ходе процесса.
Из анализа литературы следует также, что при переработке лома шарошечных долот задача сохранения основных наиболее ценных компонентов смеси вольфрама с карбидом вольфрама может быть достигнута при использовании электрохимического растворения, учитывая значительное различие в стандартных потенциалах компонентов, входящих в состав лома, и склонность к пассивации как вольфрама, так и его карбидов.
Поставленная цель достигается при помещении лома шарошечных долот в электролизную ванну в качестве анодов, а катодом служит металл с высоким перенапряжением выделения водорода (например, свинец). В качестве электролита используется раствор серной кислоты исходной концентрации 2,0-2,2 моль/л (196-216 г/л). Выбор концентрации электролита обусловлен, с одной стороны, необходимостью обеспечения достаточно высокой электропроводности раствора, а с другой, ограниченной растворимостью сульфата железа (1,75 моль/л при 20оС), а также необходимостью применения растворов с относительно невысокой концентрацией серной кислоты во избежание растворения вольфрамсодержащих компонент (т. е. как вольфрама, так и карбида вольфрама). Перевод в раствор других компонентов, входящих в состав лома, может быть достигнут за счет анодного растворения, поскольку известно, что сплавы железо-никель и железо-медь растворяются гомогенно и с достаточной скоростью.
Токоподвод к анодно растворяющемуся лому осуществляется либо путем контакта с центральным графитным стержнем, на который надеваются цельные отработанные шарошечные долота, подлежащие растворению, либо путем загрузки отдельных сегментов долот в чехлы из углеродной ткани (ТМП-1 или УПМ-8,1 сорт. согласно ТУ 640-65).
Оптимальной анодной плотностью тока следует считать величину 250-300 А/м3, при более низкой плотности тока соответственно возрастает время электролиза, а при более высокой плотности тока начинают сказываться диффузионные ограничения, связанные с отводом ионов железа от поверхности анода и с возможностью возникновения солевой пассивности, особенно в порах растворяющегося лома, так как при вытравливании железосодержащей компоненты между зернами вольфрама образуются каналы-поры, и скорость отвода продуктов растворения из этих пор, особенно в конце электролиза, может значительно снизиться. Процесс анодного растворения лома шарошечных долот можно проводить при комнатной (20-25оС) температуре. Повышение температуры, в принципе, возможно, но при этом значительно усложняется оборудование (введение подогрева, термостойкая футеровка ванн и т.п.). Габаритные размеры электролизных ванн определяются исходя из объема перерабатываемого лома и способа размещения анодов. Существенной деталью электролизных ванн является необходимость их изготовления с донной частью в виде опрокинутой пирамиды с вершиной в средней части ванны образующийся при растворении шлам (смесь частиц вольфрамсодержащей компоненты и илистая часть шлама) осыпаются с анодно растворяющегося лома и скапливаются в нижней части ванны, откуда могут быть удалены сливом вместе с электролитом и впоследствии разделены. Примесные количества никеля и меди, входящие в состав железосодержащей части лома, образуют с железом твердые растворы и гомогенно растворяются вместе с железом. Поскольку равновесный потенциал меди значительно положительнее, чем никеля и тем более железа, появляющиеся в электролите ионы меди (II) будут разряжаться на катоде, образуя осадки в виде губки.
Таким образом, при анодном растворении лома шарошечных долот в растворах серной кислоты достигается разделение продуктов растворения на следующие составляющие:
вольфрам (вместе с карбидом вольфрама) в виде отдельных зерен выкрашивается в ходе растворения лома и скапливается на дне ванны;
значительная часть меди в виде катодной губки, осаждающаяся на свинцовых катодах, может быть удалена с поверхности катода по окончании электролиза либо механическим путем, либо растворением в кислом растворе медного купороса в присутствии кислорода воздуха за счет реакции конпропорционирования и последующего окисления ионов одновалентной меди кислородом воздуха в кислой среде;
железо в виде сульфатов железа, содержащих примесные количества сульфатов никеля и меди, а также непрореагировавшую часть серной кислоты. Дальнейшая утилизация железа из растворов определяется исходя из целевого назначения получаемого продукта. Если, к примеру, предполагается использовать железо для получения железного сурика, то после нейтрализации раствора до pH ≈ 3,5 и продувки кислорода (воздуха) с постепенным повышением pH до ≈5 можно количественно осадить железо в виде гидроокиси, а последующим прокаливанием гидроокиси получить окись железа (III) железный сурик (Fe2O3);
мелкодисперсный шлам в количестве до 3% от общей массы лома, собирающийся на дне ванны вместе с вольфрамсодержащей фракцией и легко отделяемый от последней путем промывки на сетке (с размером ячеи 0,5х0,5 мм), может быть присоединен к осадку гидроокиси железа и переработан в сурик. При соблюдении указанных условий электролиза переход вольфрама в раствор полностью исключается. Во всяком случае, концентрация ионов вольфрама в растворе ниже предела чувствительности метода аналитического определения;
скрап, образующийся в результате неполного растворения лома, подлежит дальнейшей анодной обработке при указанных условиях (т.е. как и исходный лом) в чехлах из углеродной ткани.
Отмытый от мелкодисперсной части шлама вольфрамсодержащий компонент после промывки в воде и сушки может быть в дальнейшем использован по назначению.
П р и м е р 1. Взято два подлежащих переработке шарошечных долота общей массой 877 г, после удаления внутренней (железной) части 688,8 г. Расчет показывает, что в перерабатываемых долотах содержится 388 ± 30 г железа, 39,9 ± 3,3 г меди и 4,8 ± 2 г никеля и 270± 24 г вольфрамсодержащей компоненты.
По закону Фарадея для растворения железосодержащей компоненты требуется 410 а.ч. (считая выход по току равным 100%) и при силе тока 3,6 А время электролиза составит 120 ч. Объем электролита (2 моль/л серной кислоты) с учетом коэффициента использования 0,8 составит 9,2 л.
Проведя анодное растворение при указанной силе тока (3,6 А) и требуемое время (120 ч) получили скрапа 180,6 г, т.е. масса лома уменьшилась на 498 г, откуда следует, что выход по току составил 85%
Последующее растворение скрапа в чехле из углеродной ткани позволило получить еще 72,4 г вольфрамсодержащей компоненты, что в совокупности с ранее выделенной в шлам 207,4 г вольфрамсодержащей частью дало в сумме 279,8 г смеси вольфрама с карбидом вольфрама это количество согласуется с расчетным (270± ± 24 г).
П р и м е р 2. Взято 2 шарошечных долота, которые после удаления внутренней (железной) части имели массу 674,3 г. Анодное растворение этих долот при силе тока 5 А в течение 90 ч привело к получению 210,0 г скрапа, покрытого кристаллами сульфата железа (масса скрапа получена после отмывки в воде и сушки).
Масса лома снизилась на 464,3 г, т.е. выход по току составил около 76% Растворение скрапа дало дополнительно 84,1 г вольфрамсодержащей фракции; из шлама выделено 197,4 г этой же фракции, т.е. всего получено 281,5 г вольфрамсодержащей фракции и в этом случае количество выделенной вольфрамсодержащей компоненты соответствует данным расчета.
П р и м е р 3. Исходное количество перерабатываемого лома одно шарошечное долото, масса которого (без железного сердечника), 340,2 г. После электролитического растворения в течение 90 ч при силе тока 3,3 А получили 109 г скрапа, растворение которого дало дополнительно 35,1 г вольфрамсодержащей фракции. Всего же получено 129,1 г этой фракции, что согласуется с данными расчета.
П р и м е р 4. Исходное количество лома одно шарошечное долото, масса которого (без железного сердечника) 331,6 г.
Анодное растворение проводилось в электролите объемом 5 л (2 моль/л серной кислоты) при силе тока 5 А в течение 50 ч. Получено скрапа 137,3 г, после его анодной обработки выделено 40,7г вольфрамсодержащей фракции. Из шлама ранее выделено 80,1 г этой же фракции, суммарное количество составило 120,8 г, что несколько ниже, чем ожидалось по расчету (135 ± 12г), хотя качественный анализ не показал наличия ионов вольфрама в растворе. Возможно, что потеря вольфрамсодержащей компоненты связана с увеличением перехода этой компоненты в мелкодисперсную часть шлама. Это обстоятельство приводит к заключению о том, что необходимо ограничить верхний предел допустимой анодной плотности тока величиной 3,5 А/дм2 (350 А/м2).
Во всех приведенных случаях растворение проводилось при температуре 20 ± 1оС, количество осажденной на свинцовом катоде меди во всех случаях было одинаковым и составляло, в среднем, при расчете на одно шарошечное долото, 13,6 ± 0,3 т. т.е. на катодах осаждено около 65% от количества перешедшей в раствор меди. Такого рода постоянство определяется осаждением меди на предельном диффузионном токе и отсутствием перемешивания раствора. Введение перемешивания будет способствовать увеличению степени извлечения меди из электролита, но, в то же время, приведет к загрязнению катодного осадка меди за счет включения в осадок мелкодисперсной части шлама. Анодный выход по току в начальный момент электролиза близок к 100% но постепенно снижается как вследствие снижения концентрации свободной серной кислоты так и из-за увеличения омических потерь в порах растворяющегося металла, и в конце электролиза снижается примерно до 60% т.е. в среднем можно считать выход по току равным 80%
Использование анодного растворения лома шарошечных долот в растворах серной кислоты умеренной концентрации позволяет количественно сохранить для целей дальнейшего использования наиболее ценную компоненту лома смесь карбида вольфрама и металлического вольфрама, при одновременном частичном разделении и утилизации других металлов, входящих в перерабатываемый лом как железа, так и меди.
Формула изобретения: СПОСОБ ПЕРЕРАБОТКИ ЛОМА ВОЛЬФРАМСОДЕРЖАЩИХ МЕТАЛЛОКЕРАМИЧЕСКИХ КОМПОЗИЦИЙ на связке из железа или сплавов на основе железа, включающий анодное растворение лома, отличающийся тем, что анодное растворение проводят в растворах серной кислоты концентрации 2,0-2,2 мол/л при комнатной температуре и при анодной плотности тока 2,5-3,5 А/дм2.