Forbidden

You don't have permission to access /zzz_siteguard.php on this server.

СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДЯЩИХ ИЗДЕЛИЙ ИЗ ПОРОШКА СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ - Патент РФ 2050604
Главная страница  |  Описание сайта  |  Контакты
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДЯЩИХ ИЗДЕЛИЙ ИЗ ПОРОШКА СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДЯЩИХ ИЗДЕЛИЙ ИЗ ПОРОШКА СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ

СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДЯЩИХ ИЗДЕЛИЙ ИЗ ПОРОШКА СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ

Патент Российской Федерации
Суть изобретения: Изобретение относится к технологии получения изделий любой формы и размеров на основе высокотемпературной сверхпроводящей (ВТСП) керамики, содержащей оксиды меди и других металлов. Сущность изобретения: способ заключается в том, что исходный порошок керамики, содержащей элементы ПА, ША, IVA, VA групп Периодической системы, медь, кислород, подвергают термообработке в восстановительной атмосфере (аргон-водород) по заданному режиму в области температур 300 950°С. Термообработка в атмосфере аргон-водородной смеси приводит к выделению в пределах отдельных частиц порошка мелкодисперсной, гомогенно распределенной металлической меди. Мелкодисперсная, гомогенно распределенная в частицах порошка полученного полуфабриката металлическая медь является естественным пластификатором, который нет необходимости удалять, так как она один из компонентов ВТСП-керамики. Наличие такого пластификатора позволяет применять различные методы формования, что открывает возможность получать компактные изделия требуемых формы и размеров в оболочке и без оболочки. Использование таким образом полученной меди как пластификатора в ВТСП-керамике исключает вредное влияние углерода, а также других примесей, которые остаются в образцах ВТСП-керамики после удаления пластификаторов. Изготовленный из полуфабриката компактный кермет подвергают термической обработке в окислительной атмосфере, например кислороде, в результате чего синтезируют и спекают ВТСП-изделие требуемых формы и размеров. Предлагаемый способ предусматривает изготовление проводников из ВТСП-керамики в металлической оболочке, например в серебре. Для этого необходимо перед термообработкой в восстановительной атмосфере заполнить порошком исходной керамики металлическую оболочку и далее проводить последовательно термообработки в восстановительной и окислительной средах по указанной выше схеме. При необходимости после термообработки в восстановительной атмосфере изделие подвергают деформации для придания ему нужных формы и размеров, а потом проводят термообработку в окислительной среде. 2 з. п. ф-лы.
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2050604
Класс(ы) патента: H01B12/00, C04B35/00
Номер заявки: 93018236/07
Дата подачи заявки: 09.04.1993
Дата публикации: 20.12.1995
Заявитель(и): Государственный научный центр РФ "Всероссийский научно- исследовательский институт неорганических материалов им.акад.А.А.Бочвара"
Автор(ы): Макаров В.М.; Киреев Г.А.; Хлебова Н.Е.; Шиков А.К.; Илюхин Ю.В.
Патентообладатель(и): Государственный научный центр РФ "Всероссийский научно- исследовательский институт неорганических материалов им.акад.А.А.Бочвара"
Описание изобретения: Изобретение относится к технологии получения изделий любой формы и размеров на основе высокотемпературной сверхпроводящей (ВТСП) керамики, содержащей оксиды меди и других металлов. ВТСП-керамика является хрупким материалом со структурой перовскита, синтез которого осуществляется путем термической обработки в кислородсодержащей атмосфере оксидов или других компонентов, входящих в состав ВТСП-керамики.
Известен способ получения формованной ВТСП-керамики [1] которая имеет высокую сплошность и механическую прочность, заключающийся в том, что порошок ВТСП-керамики смешивают с полимером-связкой, растворенным в безводном органическом растворителе. Полимер-связка должен иметь полярную группу, например NH-2, COOH- или OH-. Соотношение количеств ВТСП-керамики и полимера-связки равно 1:1 по массе. Приготовленную смесь формуют, затем заготовку обезжиривают, кальцинируют и термообрабатывают в кислородсодержащей атмосфере.
Другой способ получения ВТСП-керамики [2] включает в себя перемешивание высокочистых порошков ВаСO3, SrCO3, Er2O3 и CuO для получения состава Er(Ba1-xSrx)2Cu3O7-х (0 < х < 0,75) и термообработку. Полученный спек измельчают, смешивают со связующим (например, с пропиловым спиртом) и формуют. Затем заготовку нагревают в кислороде и спекают при 900-1000оС.
Существенным недостатком приведенных способов является необходимость удаления (выжигания) органического пластификатора, что связано с наличием остаточного углерода в готовом изделии. Процесс удаления углеродсодержащей связки очень длителен (более 2 сут) и не гарантирует полного ее удаления,при этом слой углерода, находящийся на границе раздела зерен, действует как диффузионный барьер, что приводит к низким значениям плотности тока.
Наиболее близким к предлагаемому является способ получения изделий из керамического сверхпроводящего материала [3] в котором состав, включающий частицы сверхпроводящего керамического материала, перемешивают и формируют из него изделие, которое нагревают для удаления органического пластификатора, затем термообрабатывают в кислородсодержащей атмосфере при температуре спекания частиц сверхпроводящего материала.
Предлагаемый способ заключается в том, что исходный порошок керамики, содержащей элементы IIA, IIIA, IVA, VA групп периодической системы медь, кислород, подвергают термообработке в восстановитель- ной атмосфере (аргон-водород) по заданному режиму в области температур 300-950оС. Термообработка в атмосфере аргон-водородной смеси приводит к выделению в пределах отдельных частиц порошка мелкодисперсной, гомогенно распределенной металлической меди. Завершение процесса определяется по изменению веса образца и посредством контроля химического потенциала кислорода на выходе из реактора. Мелкодисперсная, гомогенно распределенная в частицах порошка полученного полуфабриката металлическая медь является естественным пластификатором, который нет необходимости удалять, так как она один из компонентов ВТСП-керамики. Наличие такого пластификатора позволяет применять различные методы формования, что открывает возможность получать компактные изделия требуемых формы и размеров в оболочке и без оболочки. Использование таким образом полученной меди как пластификатора в ВТСП-керамике исключает вредное влияние углерода, а также других примесей, которые остаются в образцах ВТСП-керамики после удаления пластификаторов. Изготовленный из полуфабриката компактный кермет подвергают термической обработке в окислительной атмосфере, например кислороде, в результате чего синтезируют и спекают ВТСП-изделие требуемых формы и размеров.
Предлагаемый способ предусматривает изготовление проводников из ВТСП-керамики в металлической оболочке, например в серебре. Для этого необходимо перед термообработкой в восстановительной атмосфере заполнить порошком исходной керамики металлическую оболочку и далее проводить последовательно термообработки в восстановительной и окислительной средах по указанной выше схеме. При необходимости после термообработки в восстановительной атмосфере изделие подвергают деформации для придания ему нужных формы и размеров, а потом проводят термообработку в окислительной среде.
П р и м е р 1. Порошок ВТСП-керамики состава YBaCU2O7-х получали методом, включающим тщательное перемешивание исходных компонентов в виде оксидов Y2O3, CuO и карбоната бария ВaCO3 в необходимых пропорциях, прокалку смеси при 900оС в течение 10-15 ч, дробление, просев, прессование в таблетки, спекание их при 900-940оС в течение 10 ч и охлаждение в кислороде с выдержкой при 620-400оС в течение 30 ч. Изготовленный таким образом порошок помещали в алундовом тигле в печь, в котором предусмотрены контроль изменения веса образца, продув газа и контроль изменения химического потенциала кислорода на выходе из рабочего пространства печи. В качестве восстановительной атмосферы использовали аргон-водородную смесь, продуваемую через рабочее пространство со скоростью 120 л/ч. Нагрев порошка проводили со скоростью 100 град/ч до 900-950оС, при которой выдерживали до тех пор, пока не переставал изменяться вес образца и кислородный датчик фиксировал окончание процесса выделения кислорода образцом. После этого образец охлаждали до комнатной температуры и размалывали в шаровой мельнице. Таким образом был изготовлен порошок-полуфабрикат, содержащий 21,7% мелкодисперсной, гомогенно распределенной металлической меди.
Из полученного порошка были изготовлены два типа компактных заготовок: таблетки и тонкостенные кольца (толщина стенки 1 мм). Таблетки изготавливали путем прессования при давлении 3 т/см2. Тонкостенные кольца получали методом мундштучного формования с предварительной подпрессовкой. Затем компактные заготовки подвергали термообработке в окислительной атмосфере в следующем режиме: нагрев со скоростью 100 град/ч до 900-950оС на воздухе, выдержка при этой температуре в течение 20 ч, охлаждение со скоростью 100 град/ч до 500оС (при 700оС через рабочее пространство печи включали продув кислорода со скоростью 2 л/ч), выдержка при 500оС в протоке кислорода в течение 20 ч, охлаждение до комнатной температуры.
Проведенные металлографический и рентгеновский анализы образцов после окислительного отжига показали их высокую гомогенность состава, наличие более 95% фазы YBa2Cu3O7-х со следующими характеристиками Тк 90К и ΔT≅ 2К.
П р и м е р 2. Порошком керамики состава YBa2Cu3O7-х, полученным методом, описанным в примере 1, заполняли трубку из серебра или серебряного сплава, содержащего ≥90% серебра, диаметром 1 мм с толщиной стенки 1,5 мм или диаметром 6 мм с толщиной стенки 1 мм. Полученную композиционную заготовку деформировали волочением или экструзией от диаметра 10 или 6 мм до диаметра 2 мм и последующей прокаткой в ленту до толщины 0,1-0,2 мм. Изготовленный таким образом композиционный проводник помещали в печь, в которой предусмотрены продув газа и контроль изменения химического потенциала кислорода на выходе из рабочего пространства печи. В качестве восстановительной атмосферы использовали аргон-водородную смесь, продуваемую через рабочее пространство со скоростью 120 л/ч. Нагрев проводника проводили со скоростью 100 град/ч до температуры 900-950оС, при которой образец выдерживали до тех пор, пока кислородный датчик не фиксировал окончание процесса выделения кислорода образцом. На этом этапе внутри серебряной оболочки получали полуфабрикат. После этого отключали подачу аргон-водородной смеси, продували печь аргоном и включали подачу кислорода. Дальнейший окислительный отжиг проводили по следующему режиму: выдержка при температуре 900-950оС в течение 10 ч, охлаждение со скоростью 100 град/ч до температуры 600оС, выдержка в течение 10 ч, дальнейшее охлаждение со скоростью 100 град/ч до температуры 400оС, выдержка 20 ч, выключение продува печи кислородом и охлаждение образца с печью.
Проведенные металлографические и рентгенофазовые исследования и измерение электрофизических характеристик показали наличие в ВТСП-сердцевине более 95% фазы YBa2Cu3O7-х в крупнокристаллическом состоянии (100-200 мкм) с плотными границами кристаллитов, с Тк > 90 К и ΔТ < 2 К и плотностью критического тока jk≈103-104 A/см2 при 77 К в собственном магнитном поле.
П р и м е р 3. Порошком керамики состава YBa2Cu3O7-х, полученным методом, описанным в примере 1, заполняли трубку из серебра или серебряного сплава, содержащего ≥ 90% серебра, размером 6х1 или 10х1,5 мм. Полученную композиционную заготовку подвергали деформации волочением или экструзией от диаметров 10 или 6 мм до диаметра 2 мм и последующей прокатке до толщины 0,5 мм. Изготовленный таким образом композиционный проводник помещали в печь, в которой предусмотрены продув газа и контроль изменения химического потенциала кислорода на выходе из рабочего пространства печи. В качестве восстановительной атмосферы использовали аргон-водородную смесь, продуваемую через рабочее пространство со скоростью 120 л/ч. Нагрев проводника проводили со скоростью 100 град/ч до температуры 900-950оС, при которой выдерживали до тех пор, пока кислородный датчик не фиксировал окончание процесса выделения кислорода образцом. На данном этапе в серебряной оболочке образуется полуфабрикат, содержащий 21,7% мелкодисперсной, гомогенно распределенной металлической меди, служащей пластификатором при деформации проводника. После этого образец охлаждали до комнатной температуры и подвергали деформации прокаткой до окончательной толщины 01,-0,2 мм, после чего проводники подвергали термообработке в окислительной атмосфере по следующему режиму: нагрев со скоростью 100 град/ч до температуры 900оС на воздухе, выдержка при этой температуре в течение 10 ч, включение продува кислорода со скоростью 2 л/ч и охлаждение со скоростью 100 град/ч до температуры 600оС, выдержка 10 ч, охлаждение со скоростью 100 град/ч до температуры 500оС, выдержка в течение 10 ч, охлаждение со скоростью 100 град/ч до температуры 400оС, выдержка 20 ч, выключение продува кислорода и дальнейшее охлаждение образца с печью до комнатной температуры.
Проведенные металлографические и рентгенофазовые исследования и измерения электpофизических характеристик показали наличие более 95% фазы YBa2Cu2O7-х в крупнокристаллическом состоянии с плотными границами кристаллитов, с Тк > 90 К и ΔТ < 2 К и плотностью критического тока jк ≈ 103-104 А/см2 при 77 К в собственном магнитном поле.
Формула изобретения: 1. СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДЯЩИХ ИЗДЕЛИЙ ИЗ ПОРОШКА СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ, содержащей элементы IIA, IIIA, IVA, VA групп Периодической системы, медь и кислород, при котором изготовляют полуфабрикат, содержащий порошок керамики и пластификатор, формуют из него изделие требуемой конфигурации и подвергают его термообработке в кислородсодержащей среде, отличающийся тем, что полуфабрикат изготавливают путем термообработки указанного порошка сверхпроводящей керамики в восстановительной атмосфере при температуре 300 950oС, обеспечивая получение пластификатора - мелкодисперсной, гоомогенно распределенной металлической меди в пределах отдельных частиц порошка, термообработку в кислородсодержащей среде проводят при температурах и в течение времени, необходимых для синтеза и спекания высокотемпературного сверхпроводника.
2. Способ по п. 1, отличающийся тем, что при изготовлении полуфабриката порошок исходной керамики помещают в металлическую оболочку, получая композит.
3. Способ по п. 2, отличающийся тем, что между термообработками в восстановительной атмосфере и кислородсодержащей среде проводят операцию деформирования композита.