Главная страница  |  Описание сайта  |  Контакты
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ИЗ ЛИГНОЦЕЛЛЮЛОЗНОГО СЫРЬЯ
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ИЗ ЛИГНОЦЕЛЛЮЛОЗНОГО СЫРЬЯ

СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ИЗ ЛИГНОЦЕЛЛЮЛОЗНОГО СЫРЬЯ

Патент Российской Федерации
Суть изобретения: Изобретение относится к способам получения сорбента из лигноцеллюлозного сырья. Сущность заявленного технического решения состоит в том, что получение сорбента осуществляют из радиализованного лигноцеллюлозного сырья. Предлагаемый способ обработки отходов лигноцеллюлозного сырья дает возможность получить высокоэффективный сорбент, по сорбционным свойствам сопоставимый с отечественным энтеросорбентом полифепан. По предлагаемому способу упрощается технология получения сорбента. В качестве сырья используются отходы натуральных природных биополимерных материалов.
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

   С помощью Яндекс:  

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2089284
Класс(ы) патента: B01J20/30
Номер заявки: 95119016/25
Дата подачи заявки: 09.11.1995
Дата публикации: 10.09.1997
Заявитель(и): Ленинградская атомная электростанция им.В.И.Ленина
Автор(ы): Еперин А.П.; Климентов А.С.; Кириллов Н.А.; Шмаков Л.В.; Шевченко В.Г.; Белянин Л.А.
Патентообладатель(и): Ленинградская атомная электростанция им.В.И.Ленина
Описание изобретения: Изобретение относится к способам получения изобретения из лигноцеллюлозного сырья.
Известен традиционный способ получения сорбента путем жесткого кислотного гидролиза лигноцеллюлозного сырья, получением технологического лигнина и его последующей щелочной варкой, обмывкой водой от растворимых компонентов, нейтрализацией уксусной кислотой, отмывкой водой от избытка уксусной кислоты, разрыхлением и расфасовкой продукта [1]
Недостатком указанного способа является многостадийность, энерго- и материалоемкость процесса переработки лигноцеллюлозного сырья в сорбент.
Наиболее близким по технической сущности является способ получения сорбента на основе древесных опилок, включающий обработку опилок водно-спиртовым раствором, дигексил-α-оксибутилфосфоната [2]
Недостатком известного способа является то, что он не пригоден для применения в медицине, микробиологической и пищевой промышленности, а также невысокая сорбционная способность получаемого материала. Способ требует использования дорогостоящих свежеприготовленных химикатов, многостадийных и трудоемких ручных операций при приготовлении и перемешивании многокомпонентных смесей.
Целью данного изобретения является упрощение технологии получения сорбента из лигноцеллюлозного сырья, повышение экологичности процесса, расширение потребительских свойств сорбента.
Сущность заявляемого технического решения состоит в том, что лигноцеллюлозное сырье предварительно подвергают окислительно- восстановительной деструкции путем облучения ионизирующей радиацией гамма-квантом или пучком ускоренных электронов до поглощенной дозы 40-200 кГр с последующим измельчением и промывкой водой или щелочью при концентрации 0,1-0,5% от растворимых компонентов в течении 0,5 24,0 ч при температуре 293-373 К.
В заявленном техническом решении природное лигноцеллюлозное сырье подвергается предварительной оптимальной радиационной окислительно-восстановительной деструкции. В этом способе 20-90% лигноцеллюлозного сырья после обработки ионизирубщей радиацией и последующего гидролиза переводят в низко-молекулярные водорастворимые фрагменты в виде полиокси-кислот и фенилпропановых кислот,обладающие комплексообразующими свойствами к ионам тяжелых металлов: Сu2+, Co 2+, Се 3+,vo22+
В предлагаемом способе решается задача полученного твердого нерастворимого сорбента из лигноцеллюлозного сырья, обладающего способностью сорбировать широкую гамму органических и неорганических соединений из водных растворов, биологических субстратов и т.д. Поэтому для сохранения механической прочности основы (матрицы) лигноцеллюлозного сырья при окислительно- восстановительной деструкции облучение ионизирующей радиацией ведут в интервале умеренных поглащенных доз 40-200 кГр Экспериментально установлено, что при облучении сырья до поглащенной дозы в интервале 50-150 кГр практически полностью разрушается лигноуглеводные связи, что способствует при последующем гидролизе удаления из лигноцеллюлозного сырья смолистых, белковых веществ и гемицеллюлоз. Кроме того, при дозах облучения 40-80 кГр сокращаются в 1,5-2 раза энергозатраты на механический помол лигноцеллюлозного сырья. По данным микроскопического анализа в сырье нарушается прочность клеточных оболочек. При дозе облучения 50 кГр молекулярная масса макромолекул целлюлозы в древесине уменьшается в -3 раза, 100 кГр 5-6 раз, 200 кГр 7-8 раз. Дальнейшее увеличение дозы облучения приводит к глубокой деструкции макромолекул и в сырье возрастает содержание нестабильных перекисных продуктов, способствующих деструкции макромолекул до олигомеров. Сорбционная способность образцов предлагаемого препарата зависит от размера частиц (смотри таблицу).
Фракция сорбента размерами 0,1-0,25 мм является основной и составляет 75-85 Поэтому она выбрана стандартной для оценки сорбционной способности предлагаемого препарата.
Способ пояснения следующими конкретными примерами.
Пример 1. Древесину березы с размером частиц 1-5 мм (опилки) облучили гамма-квантами кобальта 60 до поглащенной дозы 80 кГр при 293К, измельчали в дезинтеграторе 2 мин по фракции 0,1-0,25 мм и кипятили 0,5 ч при гидромодуле 5 в 0,1 растворе едкой щелочи (КОH), промывали горячей водой на воронке с полотняным фильтром до рH ≃ 6,5 в промывных водах. В раствор перешло 10% исходной навески. Влажную массу препарата отжали и провялили на воздухе по влажности 65% и оценивали показатели его сорбции метиленового синего и клеток Е·coli из водного раствора. Сорбционная способность образцов препарата составила по величине сорбции метиленового синего 56±5 мг/г и клеток Е·Coli 600±40 млн. клеток/г. Адсорбционная способность препарата из облученной древесины березы по метиленовому синему отвечает требованиям фармакопейной статьи ФС 42-2793-91, предъявляемым к медицинскому средству "Полифепан", производимому из технического лигнина. В отличие от препарата полифепан, имеющего темно-коричневый цвет, предлагаемый сорбент имеет белый цвет, что повышает его значение как медицинского средства.
Пример 2. Иллюстрирует применение опилок обработанных по способу, описанному в примере 1. Опилки древесины березы, подготовленные как описано в примере 1, использовали в качестве сорбента в колонке, через которую прогоняли горячий раствор с концентрацией агар-агара 0,85 При замере прозрачности студней, указанного выше раствора агар-агара до и после пропускания через колонку с предлагаемым сорбентом по стандартной методике ГОСТ 26 185-84, светопропускаемость при длине волны λ 670нм возрастала от 40 до 75% соответственно. Таким образом, после пропускания через колонку с предлагаемым сорбентом раствор агар-агара обесцвечивался. Этот пример показывает, что сорбент из радиализованных опилок березы хорошо сорбирует красящие вещества, содержащиеся в морской траве (водоросли анфелции), из которой извлекают агар-агар. Полифепан для этих целей не пригоден.
Пример 3. Опилки древесины сосны с размером частиц 1-5 мм облучали пучком ускоренных электронов с энергией 1,6 Мэв до поглащенной дозы 200 кГр, измельчали, кипятили в 0,5 растворе едкой щелочи и промывали горячей водой до рH= 5,5, как описано в примере 1. В раствор перешло 5% исходной навески. Полученный сорбент в виде нерастворимого остатка влажностью 65% показал сорбционную емкость метиленнового синего 63±8 мг/г.
Пример 4. Образцы соломы с размером частиц 5-10 мм гамма облучали до поглащенной дозы 80 кГр, измельчали, кипятили в воде 1 ч и промывали горячей водой до рH= 4,0, как описано в примере 1. В раствор перешло 12% исходной навески. Полученный препарат в виде нерастворимого остатка влажностью 62% показал сорбционную емкость метиленнового синего 40±10 мг/г.
Пример 5. Опилки древесины лиственницы с размером частиц 2-5 мм гамма-облучали до поглощенной дозы 50 кГр в бассейне выдержки отработанного ядерного топлива реакторов РБМК- 1000 при температуре 323К, измельчали в дезинтеграторе 3 мин до фракции 0,1-0,25 мм и выдерживали в воде при гидромодуле 8-24 ч и промывали горячей водой на воронке с полотняным фильтром до рH=5,0 в промывных водах. В раствор перешло 35% исходной навески. Сорбционная способность образцов препарата из древесины лиственницы составляла по величине сорбции метиленового синего 76±12мг/г и клеток Е·coli 800±100 мнл. клеток/г.
Пример 6. Сорбционный препарат был приготовлен как описано в примере 5. Далее к пробам добавлены 10% раствор мочевины до гидромодуля 6-7 и выдерживали его в герметичной упаковке при комнатной температуре 2-4 суток. После этого пробы отмывали горячей водой до рH=6,5-7,0, в промывных водах и анализировали на содержание связанного азота по стандартным методикам. Результаты анализа показали, что содержание связанного азота в препарате от 0,5% в исходной пробе (в перерасчете на условный белок) возрастало до 8-10% после сорбции мочевины из раствора.
Экспериментально установлено, что предлагаемый способ обработки отходов лигноцеллюлозного сырья дает возможность получить высокоэффективный сорбент, сопоставимый по сорбционным свойствам с одним из лучших известных на сегодняшний день отечественных энтеросорбентов полифепан. По предлагаемому способу упрощается технология получения сорбента, в качестве сырья используются отходы натуральных природных биополимерных материалов и в конечном итоге получаются препараты практически белого или слабоокрашенного цвета более привлекательные для потребителя. По предварительным оценкам себестоимости производства этеросорбента из древесного сырья по предлагаемому способу будет в 1,5-2,0 раза ниже себестоимости препарата полифепан, получаемого химическим методом из технического лигнина.
Список используемой литературы
1. В. П.Леванова. "Лечебный лигнин". Санкт-Петербург, Центр сорбционных технологий, 1992 г. с.136.
2. H.H. Аносова, Д.H.Медведев, Б.И.Егоров, H.М.Серегина, К.А.Харитонов, В.И.Кириллович. Способ получения сорбента на основе древесных опилок". А.С.N 402379 (СССP) Б.И. 1973 г. N42.
Формула изобретения: Способ получения сорбента из лигноцеллюлозного сырья путем проведения измельчения и частичного гидролиза лигноцеллюлозного сырья, отличающийся тем, что предварительно осуществляют облучение сырья ионизирующей радиацией до поглощенной дозы 40 200 кГр при температуре 293 323 К, а гидролиз ведут при 293 373 К в течение 0,5 24,0 ч в водных растворах с концентрацией щелочи 0,0 0,5%