Главная страница  |  Описание сайта  |  Контакты
АКСЕЛЕРОМЕТР, РАБОТАЮЩИЙ НА ДЕФОРМАЦИИ СДВИГА В ПЬЕЗОЭЛЕМЕНТЕ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
АКСЕЛЕРОМЕТР, РАБОТАЮЩИЙ НА ДЕФОРМАЦИИ СДВИГА В ПЬЕЗОЭЛЕМЕНТЕ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

АКСЕЛЕРОМЕТР, РАБОТАЮЩИЙ НА ДЕФОРМАЦИИ СДВИГА В ПЬЕЗОЭЛЕМЕНТЕ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Патент Российской Федерации
Суть изобретения: Использование: в измерительной технике для измерения параметров ускорений и вибраций в различных областях науки и техники. Сущность: в акселерометре, работающем на деформации сдвига в пьезоэлементе, кольцевой пьезоэлемент разрезают на отдельные, не соприкасающиеся друг с другом кольцевые сектора. Затем осуществляют коаксиальное соединение кольцевых корпуса, поляризованного пьезоэлемента и инерционной массы путем пластической деформации поверхности корпуса, расположенного внутри секторов пьезоэлемента. Пластическую деформацию проводят путем холодной прокатки роликом внутренней поверхности корпуса или путем запрессовки в нее конического штифта. Электродами пьезоэлемента в этом случае будут корпус и инерционная масса, выполненные металлическими. 2 с. и 6 з.п. ф-лы, 3 ил.
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2098831
Класс(ы) патента: G01P15/09
Номер заявки: 96102098/28
Дата подачи заявки: 31.01.1996
Дата публикации: 10.12.1997
Заявитель(и): Вишневский Игорь Борисович; Зюзин Владимир Николаевич
Автор(ы): Вишневский Игорь Борисович; Зюзин Владимир Николаевич
Патентообладатель(и): Вишневский Игорь Борисович; Зюзин Владимир Николаевич
Описание изобретения: Изобретение относится к измерительной технике и может быть использовано для измерения параметров движения, вызванного вибрацией, в различных областях науки и техники.
Известен акселерометр, работающий на деформации сдвига, содержащий корпус, пьезоэлемент и инерционную массу /1/.
Наиболее близким к заявляемому является акселерометр, работающий на деформации сдвига в пьезоэлементе, содержащий концентрично расположенные и соединенные между собой корпус, чувствительный пьезоэлектрический элемент и инерционную массу /2/. Данное устройство принято за прототип акселерометра.
Известен способ изготовления сдвиговых акселерометров, включающий в себя поджатие элементов устройства, обеспечиваемое путем затяжки основания корпуса, инерционной массы и пьезоэлемента /1/.
Наиболее близким к предлагаемому относится способ изготовления акселерометра, работающего на деформации сдвига, заключающийся в формировании электродов на боковых поверхностях поляризованного пьезоэлектрического кольцевого элемента, коаксиальном размещении кольцевых корпуса, чувствительного элемента и инерционной массы и соединении их боковыми поверхностями /2/. Данный способ принят за прототип способа изготовления акселерометра.
Недостатками известных акселерометров и способов их изготовления является сложность изготовления и вытекающая из нее дороговизна получаемого изделия.
Техническим результатом, получаемым от внедрения изобретения, является упрощение процесса сборки и удешевление акселерометра.
Данный технический результат получают за счет того, что в известном акселерометре, работающем на деформации сдвига в пьезоэлементе, содержащем концентрично расположенные корпус, чувствительный пьезоэлектрический элемент и инерционную массу, чувствительный пьезоэлектрический элемент выполнен в виде отдельных, не соприкасающихся друг с другом кольцевых пьезоэлектрических секторов, с одинаковыми зазорами между ними, при этом корпус и инерционная масса выполнена из электропроводных материалов и установлены с обеспечением контактирования с боковыми поверхностями кольцевых пьезоэлектрических секторов, причем инерционная масса расположена снаружи, а корпус внутри кольцевых пьезоэлектрических секторов.
Пьезоэлемент может быть выполнен в виде четного или нечетного количества секторов.
Корпус и инерционная масса могут быть выполнены из нержавеющей стали.
Пьезоэлемент может быть выполнен на основе пьезокерамики.
В части способа данный технический результат достигается за счет того, что в способе изготовления акселерометра, работающего на деформации сдвига в пьезоэлементе, заключающемся в формировании электродов на боковых поверхностях поляризованного пьезоэлектрического кольцевого чувствительного элемента, коаксиальном размещении кольцевых корпуса, чувствительного элемента и инерционной массы и соединении их боковыми поверхностями, поляризованный пьезоэлектрический кольцевой чувствительный элемент предварительно разделяют на кольцевые пьезоэлектрические сектора, а коаксиальное размещение кольцевых корпуса, чувствительного элемента и инерционной массы и соединение их боковыми поверхностями осуществляют путем пластической деформации внутренней поверхности корпуса.
Пластическую деформацию внутренней поверхности корпуса проводят путем ее холодной прокатки роликом преимущественно шаровой или цилиндрической формы или путем запрессовки в нее конического штифта.
На фиг. 1 представлен вид элементов акселерометра в отдельности; на фиг. 2, 3 один из способов сборки акселерометра.
Акселерометр (фиг. 1) содержит концентрично расположенные пьезоэлектрический чувствительный элемент (пьезоэлемент) 1, работающий на деформации сдвига, и выполненный в виде отдельных, не соприкасающихся друг с другом кольцевых секторов ( на фиг. 1 -двух) с одинаковыми зазорами между ними, инерционную массу 2 и корпус 3.
Причем корпус 3 и инерционная масса 2 выполнены из электропроводных материалов с возможностью контактировать с боковыми поверхностями кольцевых секторов пьезоэлемента 1.
В конкретном случае корпус 3 и инерционная масса 2 могут быть выполнены из нержавеющей стали, а пьезоэлемент 1 на основе пьезокерамики.
Инерционная масса 2 расположена снаружи, а корпус 3 внутри кольцевых секторов пьезоэлемента 1.
Способ изготовления акселерометра, работающего на деформации сдвига в пьезоэлементе 1, осуществляется следующим образом.
Предварительно разделяют поляризованный пьезоэлемент 1 на кольцевые пьезоэлектрические секторы (фиг. 1). Затем осуществляют соединение кольцевых корпуса 3, поляризованного пьезоэлемента 1 и инерционной массы 2 путем пластической деформации внутренней поверхности корпуса 3. При этом одновременно на боковых поверхностях поляризованного пьезоэлемента 1 осуществляется операции формирования электродов акселерометра.
Пластическую деформацию внутренней поверхности корпуса 3 проводят путем ее холодной прокатки роликом 4 (фиг. 2, 3) преимущественно шаровой или цилиндрической формы. (На фиг. 2, 3 представлен случай с роликом 4 шаровой формы).
Пластическую деформацию внутренней поверхности корпуса 3 проводят также путем запрессовки в нее конического штифта. (Данный случай на чертеже не представлен).
Способ изготовления акселерометра позволяет простым путем получить жесткую конструкцию прибора при его относительной дешевизне, то есть достичь поставленного технического результата.
Акселерометр работает следующим образом.
Закрепляют корпус 3 датчика прибора (элементы крепления датчика на чертеже не показаны) на исследуемом изделии.
При этом на инерционную массу 2 будет воздействовать ускорение, вызывающее сдвиговую деформацию в пьезоэлементе 1. На электродах пьезоэлемента 1 (корпусе и инерционной массе) появляется заряд, пропорциональный величине воздействующего ускорения.
Как показали эксперименты, акселерометр прост и надежен в эксплуатации при относительно невысокой стоимости изделия, что позволяет достичь поставленной цели.
Формула изобретения: 1. Акселерометр, работающий на деформации сдвига в пьезоэлементе, содержащий концентрично расположенные и соединенные между собой корпус, чувствительный пьезоэлектрический элемент и инерционную массу, отличающийся тем, что чувствительный пьезоэлектрический элемент выполнен в виде отдельных не соприкасающихся друг с другом кольцевых пьезоэлектрических секторов с одинаковыми зазорами между ними, а при этом корпус и инерционная масса выполнены из электропроводных материалов и установлены с обеспечением контактирования с боковыми поверхностями кольцевых пьезоэлектрических секторов, инерционная масса расположена снаружи, а корпус внутри кольцевых пьезоэлектрических секторов.
2. Акселерометр по п. 1, отличающийся тем, что чувствительный элемент выполнен в виде четного количества кольцевых пьезоэлектрических секторов.
3. Акселерометр по п. 1, отличающийся тем, что чувствительный элемент выполнен в виде нечетного количества кольцевых пьезоэлектрических секторов.
4. Акселерометр по п.1, отличающийся тем, что корпус и инерционная масса выполнены из нержавеющей стали.
5. Акселерометр по п. 1, отличающийся тем, что чувствительный элемент выполнен на основе пьезокерамики.
6. Способ изготовления акселерометра, работающего на деформации сдвига в пьезоэлементе, заключающийся в формировании электродов на боковых поверхностях поляризованного пьезоэлектрического кольцевого чувствительного элемента, коаксиальном размещении кольцевых корпуса, чувствительного элемента и инерционной массы и соединении их боковыми поверхностями, отличающийся тем, что поляризованный пьезоэлектрический кольцевой чувствительный элемент предварительно разделяют на кольцевые пьезоэлектрические сектора, а коаксиальное размещение кольцевых корпуса, чувствительного элемента и инерционной массы и соединение их боковыми поверхностями осуществляют путем пластической деформации внутренней поверхности корпуса.
7. Способ по п.6, отличающийся тем, что пластическую деформацию внутренней поверхности корпуса проводят путем ее холодной прокатки роликом преимущественно шаровой или цилиндрической формы.
8. Способ по п.6, отличающийся тем, что пластическую деформацию внутренней поверхности корпуса проводят путем запрессовки в нее конического штифта.