Главная страница  |  Описание сайта  |  Контакты
СПОСОБ ЭЛЕКТРОМАГНИТНОГО УПРАВЛЕНИЯ ВРАЩАТЕЛЬНЫМ ДВИЖЕНИЕМ ЭЛЕКТРОПРОВОДНОГО ТЕЛА
СПОСОБ ЭЛЕКТРОМАГНИТНОГО УПРАВЛЕНИЯ ВРАЩАТЕЛЬНЫМ ДВИЖЕНИЕМ ЭЛЕКТРОПРОВОДНОГО ТЕЛА

СПОСОБ ЭЛЕКТРОМАГНИТНОГО УПРАВЛЕНИЯ ВРАЩАТЕЛЬНЫМ ДВИЖЕНИЕМ ЭЛЕКТРОПРОВОДНОГО ТЕЛА

Патент Российской Федерации
Суть изобретения: Использование: в энергетике, металлургии и литейном производстве. Сущность: в способе электромагнитного управления вращательным движением электропроводного тела управление скоростью движения электропроводного тела осуществляют изменением направления бегущего магнитного поля в течение 3 мин. В результате обеспечивается уменьшение размыва рабочего слоя огнеупорной кладки почти в 2 раза, исключается возможность термического разрушения рабочего слоя футеровки ковша перегретым металлом - электропроводным телом. Это в свою очередь позволит обеспечить эффективность одноконтурной геометрии движения электропроводного тела в аксиальной плоскости и создание условий для интенсификации процессов в жидком металле. 6 ил.
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2104607
Класс(ы) патента: H02K17/04, F27D23/04, C21C7/00, B22D1/00
Номер заявки: 95107022/09
Дата подачи заявки: 25.04.1995
Дата публикации: 10.02.1998
Заявитель(и): Малое коллективное научно-исследовательское предприятие "Алкор" (UA)
Автор(ы): Кучаев Александр Андреевич[UA]; Овчинников Николай Иванович[RU]; Кучаев Виталий Александрович[UA]
Патентообладатель(и): Малое коллективное научно-исследовательское предприятие "Алкор" (UA)
Описание изобретения: Изобретение относится к электротехнике, в частности к способам получения движения электропроводных тел в электромагнитных устройствах с бегущим магнитным полем, и может быть использовано в энергетике, металлургии и литейном производстве.
Известны [1] магнитогидродинамические устройства с бегущим магнитным полем, применяемые для перемещения жидких металлов.
Данные устройства имеют такую особенность как наличие больших немагнитных зазоров, существенное влияние краевых эффектов, невысокий КПД.
Известен [2] способ обработки металлов в ковше-печи нейтральным шлаком, включающий наведение шлака при переливе жидкого полупродукта, нагрев металла электрическими дугами и вакуумирование.
К недостаткам данного способа обработки жидкой стали в ковше-печи относится большая длительность цикла обработки расплава, недостаточный тепломассоперенос между верхними и нижними слоями жидкого металла.
Известен способ вращения электропроводного тела, заключающийся в создании неоднородного переменного электромагнитного поля между ферромагнитными поверхностями или обмотками и в области расположения электропроводного тела. При этом расширение функциональных возможностей способа при регулировании частоты и направления вращения достигается изменением расстояния между электропроводным телом и ферромагнитными поверхностями или обмотками [3].
Известный способ имеет такой существенный недостаток, как необходимость изменения расстояния между электропроводным телом и ферромагнитными поверхностями при регулировании частоты и направления вращения электропроводного тела. Реализация данного способа связана с техническими трудностями, например, для создания вращения металла в канале индукционной канальной печи необходимо перемещать магнитопровод относительно канала с жидким металлом. Кроме того, при создании между двумя ферромагнитными поверхностями неоднородного магнитного поля, силовые линии которого направлены поперек оси электропроводного тела, создаются интенсивное вращение электропроводного тела в азимутальной плоскости и незначительные перемещения электропроводной среды в аксиальном направлении.
Наиболее близким к изобретению по технической сущности и достигаемому результату является способ электромагнитного управления вращательным движением электропроводного тела, заключающийся в наложении бегущего магнитного поля на электропроводное тело [4].
Реализация способа осуществляется на установке ковш-печь с помощью кольцевого статора, создающего бегущее магнитное поле. Наложение бегущего магнитного поля на электропроводное тело (жидкий металл) приводит к созданию вращательного движения электропроводного тела в аксиальной (вертикальной) плоскости ванны жидкого металла в установке ковш-печь.
Недостатком известного способа является невозможность обеспечения эффективной одноконтурной геометрии движения электропроводного тела в аксиальной плоскости и создания условий для интенсификации процессов в жидком металле.
В основу изобретения положена задача создать такой способ электромагнитного управления вращательным движением электропроводного тела, который позволяет регулировать скорость вращения электропроводного тела изменением направления бегущего магнитного поля (БМП) на противоположное в течение 3 мин.
Поставленная задача решена таким образом, что в способе электромагнитного управления вращательным движением электропроводного тела, заключающемся в наложении бегущего магнитного поля на электропроводное тело управление скоростью движения электропроводного тела осуществляют изменением направления бегущего магнитного поля на противоположное в течение 3 мин. Следует отметить, что преимущество предлагаемого способа перед прототипом заключается в том, что при изменении направления магнитного поля создаются благоприятные условия для проведения процесса десульфурации стали, когда необходимо интенсифицировать массообмен на поверхности раздела шлак-металл.
На фиг.1 приведена схема реализации предлагаемого способа, где 1 - ковш-печь; 2 - двухфазный индуктор бегущего магнитного поля; 3 - жидкий металл; на фиг. 2-6 - структура течения металла в электропроводном теле в процессе осуществления способа.
Бегущее магнитное поле, создаваемое кольцевым индуктором, охватывающим ковш с электропроводным телом, направлено снизу вверх. При этом электропроводное тело, т.е. жидкий металл, совершает вращательное движение в аксиальной плоскости вдоль боковых стенок к поверхности и во внутренние слои с характерной скоростью V = 2,5 м/с (фиг.2).
Затем изменяется направление бегущего магнитного поля на обратное (реверсирование) в течение 3 мин. На фиг.3 показано движение электропроводного тела после 1 мин реверсирования. Как видно из фиг.3, характерная скорость движения металла снижается до 1,2 м/с. На фиг.4 показано движение металла в виде двух вихрей со скоростью V = 1,0 м/с после 2 мин реверсирования. На фиг. 5 изображено вихревое движение в электропроводном теле после 3 мин изменения направления движения бегущего магнитного поля. Как видно из фиг.5, происходит разрыв течения электропроводной жидкости на четыре вихря. Причем характерная скорость циркуляции металла в двух больших вихрях составляет 0,8 м/с, а в возникших двух новых вихрях небольшого размера характерная скорость металла соответствует 0,05 м/с.
Из фиг.6 следует, что дальнейшее реверсирование бегущего магнитного поля приводит к образованию четырех вихрей разного размера из которых в двух верхних металл циркулирует с характерной скоростью 0,2 м/с, а в двух нижних - со скоростью 0,15 м/с [5].
Таким образом, разрыв течения на четыре вихря после 3 мин реверсирования бегущего магнитного поля приводит к возникновению застойных зон, затрудняющих тепломассоперенос, в частности подвод легирующих добавок и реагентов в реакционную зону, тем самым препятствует достижению химической и температурной однородности электропроводного тела.
Реверсирование магнитного поля до 3 мин приводит к образованию только двух вихрей из четырех, что позволяет избежать возникновения застойных зон в жидком электропроводном теле.
Пример. Исследования проводили при обработке стали марки 10ГН2МФА на 150-Т установке типа ASEA-SKF, оборудованной цилиндрическим индуктором для электромагнитного перемешивания металла. После перелива из печи в ковш и наведения шлака объем расплава массой 144 т подвергается электродуговому подогреву в течение 60 мин с активной мощностью P = 10,5 МВт. При этом температура жидкой стали достигает 1610oC. Индукционный перемешиватель работает вначале при направлении бегущего магнитного поля, т.е. циркуляция металла в электропроводном теле осуществляется вверх вдоль стенок ковша и вниз - в центральной части ковша. Затем в течение 3 мин направление поля меняется на обратное, т. е. сверху вниз. Ток в индукторе Iинд = 760 А, частота ν = 0,8 Гц. После этого проводится вакуумирование с разряжением ≅ 100 ГПа с одновременным осуществлением электромагнитного перемешивания при направлении электромагнитных сил вверх, т.е. металл движется сверху вниз вдоль оси ковша со скоростью 2,5 м/с. Затем при действии электромагнитных сил, направленных вниз (реверсирование направления магнитного поля) в течение 3 мин, скорость движения металла снижается до 0,8 м/с.
В процессе испытаний после каждой плавки визуально оценивается состояние рабочего слоя огнеупорной кладки ковша. Исходная толщина рабочего слоя составляет 150 мм. При движении бегущего магнитного поля, воздействующего на электропроводное тело в одном направлении, средний за плавку износ огнеупоров рабочего слоя стенки ковша в зоне пузыреобразования составляет 4,5-5,2 мм. При осуществлении предлагаемого способа с реверсированием магнитного поля в течение 3 мин износ огнеупоров снижается до 2,5-3,0 мм.
Использование предлагаемого способа электромагнитного управления вращательным движением электропроводного тела путем изменения направления бегущего магнитного поля на противоположное в течение 3 мин по сравнению с известными способами обеспечивает уменьшение размыва рабочего слоя огнеупорной кладки почти в 2 раза, т.е. увеличивается срок службы футеровки ковша. Кроме того, предлагаемый способ исключает возможность термического разрушения рабочего слоя футеровки ковша перегретым металлом.
Формула изобретения: Способ электромагнитного управления вращательным движением электропроводного тела, заключающийся в наложении бегущего магнитного поля на электропроводное тело, отличающийся тем, что управление скоростью движения электропроводного тела осуществляют изменением направления бегущего магнитного поля в течение 3 мин.