Forbidden

You don't have permission to access /zzz_siteguard.php on this server.

ОПТИЧЕСКИЙ ФУНКЦИОНАЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ - Патент РФ 2119683
Главная страница  |  Описание сайта  |  Контакты
ОПТИЧЕСКИЙ ФУНКЦИОНАЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ
ОПТИЧЕСКИЙ ФУНКЦИОНАЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ

ОПТИЧЕСКИЙ ФУНКЦИОНАЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ

Патент Российской Федерации
Суть изобретения: Изобретение относится к специализированной вычислительной технике и может быть использовано при создании оптических вычислительных машин. Изобретение направлено на решение задачи синтеза оптического функционального преобразователя, содержащего минимальное число функциональных типовых элементов. Технический результат заключается в обеспечении простоты схемы и ее высокой технологичности. Сущность изобретения состоит в том, что в устройство, содержащее входной оптический разветвитель, дефлектор, оптический сумматор, оптический модулятор, источник излучения, введены кольцевой разветвитель, группа оптических транспарантов, оптический модулятор выполнен линейным, оптический сумматор выполнен в виде выходного разветвителя. 1 ил.
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2119683
Класс(ы) патента: G06E3/00
Номер заявки: 97102755/09
Дата подачи заявки: 24.02.1997
Дата публикации: 27.09.1998
Заявитель(и): Ростовское высшее военное командно-инженерное училище ракетных войск им.Гл.Маршала артиллерии Неделина М.И.
Автор(ы): Соколов С.В.; Мельниченко Ф.В.; Коляда Ю.И.
Патентообладатель(и): Ростовское высшее военное командно-инженерное училище ракетных войск им.Гл.Маршала артиллерии Неделина М.И.
Описание изобретения: Изобретение относится к специализированной вычислительной технике и может быть использовано при создании оптических вычислительных машин.
Известны оптические функциональные преобразователи, осуществляющие произвольные нелинейные функциональные преобразования оптических сигналов, например, полиномиальные конвейерные процессы (Семенов А.С. и др. Интегральная оптика для систем передачи и обработки информации. - М.: Радио и связь, 1990. - Рис. 7.18, стр. 198). Наиболее близким по техническому исполнению к предложенному устройству является оптический функциональный преобразователь (а.с. N 1644181, кл. G 06 E 3/00, 1987), содержащий оптический разветвитель, оптический сумматор, источник излучения и дефлектор.
Недостатком данных устройств является их функциональная сложность. Заявленное изобретение направлено на решение задачи синтеза оптического функционального преобразователя, содержащего минимальное число функциональных типовых элементов, что обеспечивает простоту схемы устройства и ее высокую технологичность.
Подобная задача возникает при создании оптических систем обработки информации, а также оптических вычислительных машин.
Сущность изобретения состоит в том, что в устройство введены два оптических разветвителя, линейный оптический модулятор и группа оптических транспарантов, выход источника излучения подключен к входу входного оптического разветвителя, первый выход которого через первый транспарант оптически связан с входом первого разветвления выходного разветвителя, а второй выход подключен к входу линейного модулятора, выходы которого через дефлектор (дисперсионную призму) оптически связаны с входами остальных транспарантов группы, разветвлений выходного разветвителя и кольцевого разветвителя, выходы разветвлений которого оптически связаны с входами модулятора, причем, выходы всех транспарантов группы, начиная с третьего, оптически связаны с входами разветвлений кольцевого разветвителя, а выход второго - с входом второго разветвления выходного разветвителя, все разветвления которого объединены по выходу и образуют выход устройства.
Сущность изобретения поясняется чертежом, где представлена функциональная схема оптического функционального преобразователя.
Устройство содержит источник постоянного некогерентного полихроматического излучения 1, три оптических разветвителя: входной 2, кольцевой 3, выходной 4, оптический линейный модулятор 5 (т.е. обеспечивающий модуляцию плоского светового потока), дисперсионную призму 6, N оптических транспарантов 70,...,7N-1.
Оптический модулятор 5 может быть выполнен аналогично предложенному в (Семенов А.С., Смирнов В.Л., Шмалько А.В. Интегральная оптика для систем передачи и обработки информации. - М.: Радио и связь, 1990. - стр. 137-140). При интегральном исполнении устройства вместо призмы 6 могут быть использованы различные дифракционные структуры /там же, стр. 38-48/.
Устройство обеспечивает при поступлении на его вход сигнала X вычисление значения произвольной заданной функции f(x), аппроксимируемой конечным степенным рядом
Выход источника излучения 1 подключен к входу входного оптического разветвителя 2, выход первого разветвления которого через транспарант 7 подключен к входу первого разветвления выходного разветвителя 4, выход второго - к входу линейного модулятора 5, управляющий вход которого является входом устройства. Выходы линейного модулятора 5 подключены через дисперсионную призму 6 к входам оптических транспарантов 7i (с функциями пропускания, обеспечивающими умножение интенсивности входного сигнала на ai), к входам оптических разветвлений выходного разветвителя 4 и к входам разветвлений кольцевого разветвителя 3. Выход транспаранта 71 подключен к входу второго разветвления разветвителя 4, выходы 72,...,7N-1 к входам разветвителя 3. Выходы всех разветвлений разветвителя 3 подключены к входам модулятора 5. Пространственное расположение входов и выходов кольцевых разветвлений обеспечивает последовательное прохождение оптического сигнала с длиной волны λi с выхода транспаранта 7i(i-1) раз по разветвителю 3 через модулятор 5 с последующим поступлением на вход разветвителя 4. Объединенные по выходу разветвления разветвителя 4 образуют выход устройства.
Функциональный преобразователь работает следующим образом.
В течение всего времени работы устройства с выхода источника излучения 1 снимается полихроматический световой поток постоянной интенсивности, поступающий далее через входной оптический разветвитель 2 на вход транспаранта 70 (на выходе которого формируется, тем самым, постоянный оптический сигнал с интенсивностью ≈a0) и на информационный вход линейного модулятора 5. На управляющий вход модулятора 5 поступает входной сигнал X, обеспечивая, тем самым, выполнение операции умножения на X входного оптического сигнала модулятора 5. Таким образом, на соответствующем участке выхода линейного модулятора 5 (на фиг. 1 - верхний) формируется полихроматический сигнал с интенсивностью, пропорциональной X. Данный сигнал, поступая через призму 6 и диспергируя по пространственным частотам, образует на соответствующих участках ее выхода оптические сигналы с различными длинами волн λi,...,λN-1 и интенсивностью, пропорциональной X. Параметры призмы 6 подбираются при этом таким образом, чтобы сигнал с длиной волны λi поступал далее на вход транспаранта 7i, формируя на его выходе сигнал с интенсивностью, пропорциональной aix. Выходные сигналы транспарантов 70, 71 поступают непосредственно на входы разветвлений выходного разветвителя 4, а сигналы с выходов транспарантов 72, . . . 7N-1 - на входы соответствующих разветвлений кольцевого разветвителя 3. Далее сигнал с длиной волны λi, i=2, N-1, по кольцевому разветвлению поступает на вход линейного модулятора 5, где происходит его умножение на X, т.е. формирование сигнала ≈aix2, который, в свою очередь, проходя через призму 6, смещается параллельно тракту своего предыдущего прохождения в призме 6 и поступает на вход следующего кольцевого разветвления, не содержащего уже оптического транспаранта. Процесс прохождения сигнала с длиной волны λi, все время смещающегося по кольцевым разветвлениям 3, через модулятор 5 и призму 6 повторяется (i-1) раз - до момента формирования сигнала ≈aixi, который, сместившись, поступает уже на вход соответствующего разветвления выходного разветвителя 4 и далее - на выход устройства. На выходе разветвителя 4 (выходе устройства) за счет объединения разветвлений происходит суммирование всех оптических сигналов, т.е. формирование искомого выходного сигнала с интенсивностью Максимальное время формирования сигнала с интенсивностью ≈f(x) в данном преобразователе определяется, по существу, временем (N-1) - кратного прохождения светового потока по тракту "выход-вход модулятора 5" и оказывается весьма малым - ≈ 10-11-10-12 с, что позволяет говорить о быстродействии данного устройства как о потенциально возможном для оптических вычислителей. Минимальное же число функционально различных элементов, определяющих состав данного преобразователя (модулятор, призма, транспаранты и волноводы), делает его схемное исполнение простым и технологичным.
Формула изобретения: Оптический функциональный преобразователь, содержащий входной оптический разветвитель, дефлектор, оптический сумматор, оптический модулятор, источник излучения, выход которого подключен к входу входного оптического разветвителя, отличающийся тем, что в него введены кольцевой разветвитель и группа оптических транспарантов, оптический модулятор выполнен линейным, оптический сумматор выполнен в виде выходного разветвителя, первый выход источника излучения через первый транспарант оптически связан с входом первого разветвления выходного разветвителя, второй выход входного оптического разветвителя подключен к входу оптического линейного модулятора, выходы которого через дефлектор оптически связаны с входами остальных оптических транспарантов группы, с входами остальных разветвлений выходного и кольцевого разветвителей, выходы разветвлений последнего из которых оптически связаны с входами оптического линейного модулятора, выходы всех транспарантов группы, начиная с третьего, оптически связаны с входами разветвлений кольцевого разветвителя, выход второго транспаранта группы соединен с входом второго разветвления выходного разветвителя, все разветвления которого объединены по выходу и образуют выход устройства.