Главная страница  |  Описание сайта  |  Контакты
ШТАММ БАКТЕРИЙ ESCHERICHIA COLI ПРОДУЦЕНТ L-ЛЕЙЦИНА (ВАРИАНТЫ)
ШТАММ БАКТЕРИЙ ESCHERICHIA COLI ПРОДУЦЕНТ L-ЛЕЙЦИНА (ВАРИАНТЫ)

ШТАММ БАКТЕРИЙ ESCHERICHIA COLI ПРОДУЦЕНТ L-ЛЕЙЦИНА (ВАРИАНТЫ)

Патент Российской Федерации
Суть изобретения: Изобретение относится к микробиологической промышленности. Путем селекции штаммов, устойчивых к L-валину, 4-азалейцину, 3-гидроксилейцину и L-лейцину, из Е.cоli К-12 созданы новые штаммы Е.соli ВКПМ В-7386 и Е.соli ВКПМ В-7388, продуцирующие L-лейцин. Преимущество изобретения заключается в высокой продуктивности новых штаммов по L-лейцину и их устойчивости к нему. 2 с.п.ф-лы.
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2140450
Класс(ы) патента: C12N1/20, C12P13/06, C12N1/20, C12R1:19
Номер заявки: 97117875/13
Дата подачи заявки: 29.10.1997
Дата публикации: 27.10.1999
Заявитель(и): Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов
Автор(ы): Гусятинер М.М.; Лунц М.Г.; Ивановская Л.В.; Ростова Ю.Г.; Бачина Т.А.; Ахвердян В.З.; Хургес Е.М.; Лившиц В.А.; Козлов Ю.И.; Дебабов В.Г.
Патентообладатель(и): Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ")
Описание изобретения: Изобретение относится к микробиологической промышленности, к способу производства L-лейцина и касается новых штаммов - продуцентов L-лейцина, принадлежащих роду Escherichia. L-лейцин - незаменимая аминокислота, которая может быть использована как питательная добавка к пищевым продуктам и к кормам животных, а также как компонент питательных смесей и реактивов в медицинской, фармацевтической или химической промышленности, как ростовой фактор для производства других аминокислот, таких как лизин.
Известны способы получения L-лейцина путем ферментации с использованием главным образом микроорганизмов рода Brevibacterium, Corynebacterium или Serratia или их мутантов, продуцирующих L-лейцин (Amino acid fermentation, JAPAN SCIENTIFIC SOCIETY'S PRESS, pp. 397-442, 1986). Уровень накопления L-лейцина с использованием Brevibacterium flavum VKPM В-2736 достигает 26 г/л на среде с сахарозой за 72 часа ферментации в лабораторном ферментере (авторское свидетельство СССР 1394711). Наиболее высокий уровень накопления L-лейцина был получен с использованием Brevibacterium lactofermentum, который продуцировал до 34 г/л L-лейцина на среде с глюкозой (Appl. Environ. Microbiol., 51,p. 1024 (1986)).
Микроорганизмы рода Escherichia перспективны в качестве потенциальных продуцентов L-лейцина благодаря их быстрому росту, большому количеству данных генетического анализа и возможностям генетического конструирования. Однако имеется немного публикаций, касающихся продукции L-лейцина с использованием этих бактерий.
Известны штаммы рода Escherichia, устойчивые к бета-тиенилаланину и бета-оксилейцину, продуцирующие 1,25 и 1,4 г/л лейцина (патент Японии N 62-34397), и штаммы, устойчивые к 4-азалейцину или к 5,5,5-трифторлейцину (выложенная японская заявка N 870879). Однако не известны ни бактерии рода Escherichia, устойчивые к L-лейцину, ни связь между устойчивостью к L-лейцину и продуктивностью L-лейцина.
В качестве прототипа нами рассматривается штамм рода Escherichia, описанный в патенте Японии N 62-34397. Недостатком штамма является его низкая продуктивность.
Нашей задачей является создание новых более продуктивных штаммов - продуцентов L-лейцина рода Escherichia. В результате исследований авторы обнаружили, что придание свойства устойчивости к L-лейцину бактериям рода Escherichia усиливает продукцию L-лейцина, что позволило создать предлагаемое изобретение.
Данное изобретение представляет собой бактериальные штаммы, которые принадлежат к роду Escherichia, которые продуцируют L-лейцин и устойчивы к нему.
Предлагаемые новые штаммы E.coli 57 и E.coli 103, устойчивы L-лейцину, а также к аналогам лейцина, 4-азалейцину и 3-гидроксилейцину. Новые штаммы накапливают на среде с глюкозой 1,5-1,7 г/л лейцина за 48 часов культивирования.
Новые штаммы Eschrichia coli 57 и Escherichia coli 103 депонированы во Всероссийской коллекции микроорганизмов и имеют регистрационные номера ВКПМ В-7386 и ВКПМ В-7388 соответственно.
Получение лейцина с помощью предлагаемых штаммов осуществляется путем культивирования бактерий в ферментационной среде с последующим выделением L-лейцина из ферментационной среды известными способами.
Новые штаммы Escherichia coli 57 и Escherichia coli 103 не имеют существенных различий в культурально-морфологических и физиолого-биохимических признаках и поэтому далее описаны вместе.
Морфология клеток. Грамотрицательные слабоподвижные палочки с закругленными концами 1,5-2,0 мкм в длину.
Культуральные признаки. Мясопептонный агар. Через 24 часа роста при 37oC образует беловатые полупрозрачные колонии диметром 1,5-2,5 мм; поверхность колоний гладкая, края ровные, структура однородная, консистенция пастообразная, легко суспендируется в воде.
Агар Луриа. Через 24 часа роста при 37oC образует беловатые полупрозрачные колонии диаметром 1,5 - 2,5 мм; поверхность колоний гладкая, края ровные, структура однородная, консистенция пастообразная, легко суспендируется в воде.
Агаризованная среда М9. Через 40-48 часов роста при 37oC образует серовато-беловатые полупрозрачные, слегка выпуклые с блестящей поверхностью колонии диаметром 0,5-1,5 мм.
Рост в мясопептонном бульоне. После 24 часов роста - сильное помутнение, характерный запах. Физиолого-биохимические признаки. Рост по уколу в мясопептонном агаре. Хороший рост по всему уколу. Микроорганизм является факультативным анаэробом. Желатину не разжижает. Индола не образует.
Среда культивирования может быть синтетической или природной, включающей источник углерода и азота, а также минеральные соли и, если необходимо, нужные количества питательных веществ, в которых нуждаются используемые штаммы.
В качестве источников углерода могут использоваться один или более углеводов, таких как глюкоза и сахароза и различные органические кислоты. В определенных условиях можно использовать спирты, например этанол и глицерин.
В качестве источника азота можно использовать различные соли аммония, такие как аммиак и сульфат аммония, а также и другие содержащие азот вещества, такие как амины; природные источники азота, такие как пептон, соевый гидролизат и ферментативный гидролизат бактерий.
В качестве минеральных солей можно использовать фосфаты калия, сульфат магния, хлорид натрия, сульфаты железа и марганца, мел.
Культивирование лучше проводить в аэробных условиях при температуре 20 - 40oC. Оптимальной является температура 30 - 38oC. Растут при pH среды 5,0 до 9,0. Предпочтительным является pH 6,5 - 7,2. pH может быть установлен аммиаком, мелом, различными кислотами, основаниями и буферами. Обычно культивирование в течение 1 - 3 дней приводит к накоплению целевого лейцина в культуральной жидкости.
Получение штамма Escherichia coli, продуцирующего лейцин поясняется ниже.
Предлагаемое изобретение создано в целях получения штамма бактерий, способного к повышенному уровню продукции лейцина, что обеспечит эффективное и экономически выгодное производство лейцина.
В результате тщательных исследований, направленных на достижение поставленной цели, данные авторы установили, что придание бактериям рода Escherichia устойчивости к L-лейцину улучшает продукцию лейцина, что и является сутью подхода к получению штамма, продуцирующего лейцин.
Таким образом, данное изобретение - это штамм рода Escherichia, способный продуцировать лейцин и устойчивый к этой аминокислоте.
Кроме того, в настоящем изобретении штамм устойчив также и к аналогам лейцина. Примерами таких аналогов могут быть 4-азалейцин, 3-гидроксилейцин, бета-2-тиенилаланин и 5,5,5-трифторлейцин и т.п., но предпочтительнее использовать 4-азалейцин и 3-гидроксилейцин. При этом отдельно проводят селекцию мутантов, устойчивых к лейцину и его аналогам.
Штамм настоящего изобретения, продуцирующий лейцин и относящийся к роду Escherichia, устойчив к L-лейцину. Примером бактерий рода Escherichia может служить кишечная палочка Escherichia coli (E.coli). Примером бактерии рода Escherichia, способной к продукции лейцина, могут служить бактерии, резистентные к бета-2-тиенилаланину, 3-гидроксилейцину, 4-азалейцину и 5,5,5-трифторлейцину, описанные в патенте Японии N 62-34397 и выложенной японской заявке на патент N 8-70879, а также бактерии, которые могут быть получены с помощью техники генной инженерии, как это описано в международной заявке WO96/06926. Штамм из рода Escherichia по предлагаемому изобретению можно получить путем отбора устойчивого к лейцину мутанта, используя в качестве родительского штамм из рода Escherichia, уже обладающего способностью к продукции лейцина. Или же, штамм из рода Escherichia по предлагаемому изобретению можно получить путем отбора мутантов, способных к продукции лейцина, используя в качестве родительского штамма бактерии рода Escherichia, устойчивые к лейцину. Наиболее предпочтительным является использование в качестве родительского штамма бактерий из рода Escherichia, который затем получает устойчивость к аналогу(ам) лейцина.
Бактерии рода Escherichia синтезируют лейцин в биосинтетическом пути, в котором синтез собственно лейцина ответвляется от 2-кетоизовалериата, который одновременно является непосредственным предшественником L-валина в биосинтетическом пути L-валина. В бактериях Escherichia биосинтез валина и лейцина осуществляется группами ферментов, кодируемых опероном ilvGMEDA и leuACBD соответственно.
Лейциновый оперон состоит из генов leuA, leuB, leuC и leuD. Из них ген leuA кодирует альфа-изопропилмалатсинтазу, leuB кодирует бета-изопропилмалатдегидрогеназу, leuC и leuD кодируют альфа-изопропилмалатизомеразу. Из указанных ферментов альфа-изопропилмалатсинтаза катализирует синтетическую реакцию получения альфа-изопропилмалата из альфа-кетоизовалериата, альфа-изопропилмалатизомераза катализирует реакцию изомеризации альфа-изопропилмалата с образованием бета-изопропилмалата, бета-изопропилмалатдегидрогеназа катализирует дегидрогенизацию бета-изопропилмалата с образованием альфа-кетоизокапроата, который является непосредственным предшественником лейцина. Реакция аминирования альфа-кетоизокапроата с образованием лейцина катализируется трансаминазой. Бактерии рода Escherichia обладают четырьмя видами трансаминаз, а именно трансаминаза A (аспартат-глутамат аминотрансфераза) кодируется геном aspC, трансаминаза B (аминотрансфераза разветвленных аминокислот) кодируется геном ilvE, который входит в состав оперона ilvGMEDA, трансаминаза C (аланин-валин аминотрансфераза) кодируется геном avtA и трансаминаза D (тирозиновая аминотрансфераза) кодируется геном tyrB. Эти ферменты участвуют в различных реакциях аминирования. Среди них трансаминазы В и D катализируют вышеупомянутую реакцию аминирования альфа-кетоизокапроата в L-лейцин. Трансаминазы В и С катализируют конечный этап синтеза валина, предшествующие этапы которого являются общими для биосинтеза валина и лейцина.
Из реакций биосинтеза лейцина, узким местом является стадия, катализируемая изопропилмалатсинтазой, которая подвержена ретроингибированию L-лейцином. Экспрессия оперона leuACBD подавляется L-лейцином. Экспрессия генов ilvBN, кодирующих синтазу 1 ацетогидроксикислот, подвержена репрессии L-лейцином и L-валином совместно. Экспрессия генов ilvGM, кодирующих синтазу 2 ацетогидроксикислот, подвержена репрессии L-изолейцином, L-валином и L-лейцином совместно. Экспрессия генов ilvIH, кодирующих синтазу 3 ацетогидроксикислот, подвержена репрессии L-лейцином.
Альфа-изопропилмалатсинтаза, которая ингибируется L-лейцином, который также репрессирует экспрессию оперона leuACBD, участвует только в синтезе лейцина. Поэтому вышеупомянутые ингибирование и репрессия не вызывают никакого дефицита других веществ даже при избытке лейцина. Более того, хотя экспрессия генов ilvIH подавляется, не происходит подавления экспрессии генов ilvBN и ilvGM, кодирующих другие изоферменты. Таким образом, избыток лейцина не должен влиять на рост клеток, однако авторы данного изобретения показали, что рост клеток подавляется при избытке L-лейцина. Кроме того, авторам предлагаемого изобретения удалось повысить продукцию лейцина бактериями рода Escherichia при приобретении ими устойчивости к L-лейцину.
Метод, которым получают штаммы рода Escherichia, устойчивые к L-лейцину, а также метод получения штаммов рода Escherichia, устойчивых к аналогам лейцина, объясняются ниже.
Бактерии рода Escherichia, устойчивые к L-лейцину, могут быть получены при культивировании в минимальной среде, содержащей L-лейцин в концентрациях, вызывающих ингибирование роста. Под ингибированием роста понимают его замедление или полную остановку. Отбор мутантов можно производить однократно или многократно. Концентрация L-лейцина в среде не лимитируется, например, 1 г/л или более, но предпочтительно от 1 до 20 г/л. Бактерии рода Escherichia могут быть предварительно обработаны мутагеном. Мутации могут быть получены при использовании ультрафиолетового облучения или обработкой мутагеном, обычно используемым для мутагенеза, например N-метил-N'-нитро-N-нитрозогуанидином (НТГ) или азотистой кислотой и другими.
Бактерии рода Escherichia, устойчивые к L-лейцину, полученные, как описано выше, могут расти в присутствии L-лейцина в концентрациях, которые ингибируют родительский штамм.
Как упоминалось выше, в биосинтезе лейцина есть несколько регулируемых этапов. Поэтому одиночная мутация, которая вызывает устойчивость к лейцину, может влиять на продукцию L-лейцина, но лучше, если две или более мутаций устранят полнее регуляцию биосинтеза. Штамм рода Escherichia с единственной мутацией может быть использован для селекции продуцирующего лейцин штамма, даже если его способность к продукции лейцина очень низка. Штамм рода Escherichia, устойчивый к аналогу лейцина, может быть получен культивированием бактерий в минимальной среде, содержащей аналог лейцина в концентрации, которая ингибирует рост, с последующим отбором выросших штаммов. Примерами аналогов лейцина являются 4-азалейцин, 3-гидроксилейцин, альфа-тиенилаланин, 5,5,5-трифторлейцин и им подобные, преимущественно 4-азалейцин и 3-гидроксилейцин.
Селекция устойчивых к аналогам лейцина мутантов может осуществляться с помощью одного или нескольких аналогов. Селекция мутантов может осуществляться в один или более этапов для одного типа аналогов.
Количество используемого аналога лейцина в среде зависит от типа аналога, но обычно составляет 0,1 г/л или более в случае 4-азалейцина или 3-гидроксилейцина. Бактерии рода Escherichia можно подвергать обработке мутагеном перед селекцией, как это описано выше.
При селекции устойчивых к аналогу лейцина или самому лейцину бактерий рода Escherichia приемлема любая последовательность.
В случае использования E.coli K-12 или его производных в качестве бактерий рода Escherichia предпочтительно получение устойчивости к L-валину в дополнении к устойчивости к L-лейцину и/или его аналогам. У штамма К-12 не выражается активный изофермент 2 синтазы ацетогидроксикислот, так как мутация сдвига рамки считывания находится в гене ilvG, кодирующем большую субъединицу этого изофермента (Proc. Natl. Acad. Sci. USA 78, 922-925, 1981). Изофермент 2 не подвержен ретроингибированию L-валином, тогда как другие изоферменты (1 и 3) подвержены ретроингибированию L-валином. Поэтому штамм K-12 не может расти в присутствии избытка L-валина, так как биосинтез лейцина подавляется. Таким образом, чтобы получить продуцирующий лейцин мутант из штамма K-12, желательно использовать штамм, в котором есть мутация в гене ilvG, которая восстанавливает рамку считывания в этом гене, в результате чего восстанавливается активность синтазы ацетогидроксикислот. Штамм с такой реверсией в гене ilvG будет устойчив к L-валину (Proc. Natl. Acad. Sci. USA 78, 922-925, 1981). Устойчивый к L-валину штамм K-12 может быть получен культивированием в минимальной среде, содержащей L-валин с последующим отбором выросших штаммов, как и в случае получения устойчивых к лейцину или его аналогам штаммов.
Однако если бактерии рода Escherichia обладают синтазой ацетогидроксикислот, которая не ингибируется L-валином, то нет необходимости получать мутанты, устойчивые к L-валину.
У бактерий рода Escherichia предлагаемого изобретения активность одного или нескольких ферментов пути биосинтеза лейцина может быть увеличена в результате обычной обработки мутагеном или с помощью техники генетической инженерии. Такое увеличение активности ферментов может быть осуществлено введением в бактерии рода Escherichia плазмиды, бактериофага или транспозона, содержащих рекомбинатную ДНК, которая получена путем вставки фрагмента ДНК, содержащей часть иди весь оперон ilvGMEDA и/или оперон leuACBD.
Определение нуклеотидной последовательности оперона leuACBD описано в Nucleic Acid Res., 20, 3305-3308 (1992). Полная последовательность оперона leuACBD имеется в базе данных (DDBJ accession no. D10483, Internet address of DDBJ: http://www.ddbj.nig.ac.jp). Фрагмент ДНК, содержащий оперон leuACBD может быть получен амплификацией фрагмента ДНК методом ПЦР (полимеразная цепная реакция, White T.J. et al. Trends Genet., 5, 185, 1989), в котором олигонуклеотиды из последовательности, упомянутой выше, используются в качестве праймеров, а хромосомная ДНК бактерии рода Escherichia используется в качестве матрицы для ПЦР. Или же оперон leuACBD может быть получен с помощью скрининга библиотеки хромосомной ДНК бактерий, принадлежащих роду Escherichia, путем гибридизации с олигонуклеотидными зондами, полученными на основе указанных выше последовательностей.
Полная нуклеотидная последовательность оперона ilvGMEDA и прилегающего к нему района описаны в Nucleic Acid Res., 15, 2137-2155 (1987) и в Gene, 97, 21-27 (1991) соответственно. Фрагмент ДНК, содержащий оперон ilvGMEDA, может быть получен методом ПЦР или с помощью гибридизации, используя олигонуклеотидный зонд или праймеры, полученные на основе описанной выше последовательности. В случае использования Escherichia coli K-12 или его производных, чтобы получить оперон ilvGMEDA, предпочтительнее использовать штамм с мутацией в гене ilvG, в котором восстановлена рамка считывания так, что активность синтетазы ацетогидроксикислот восстановлена. Метод получения оперона ilvGMEDA и метод амплификации оперона в клетке бактерий рода Escherichia полностью описаны в международной заявке WO96/06926 и Fr 2627508 соответственно.
Бактерия, принадлежащая к роду Escherichia, данного изобретения может быть использована как штамм продуцент L-лейцина и/или как родительский штамм для селекции такого штамма. Настоящее изобретение дает возможность получать L-лейцин с большей эффективностью по сравнению с известным методом получения L-лейцина с помощью бактерий, принадлежащих к роду Escherichia.
Данное изобретение иллюстрируется следующими примерами.
Пример 1. Селекция штаммов Е. coli, устойчивых к L-лейцину.
Отбор штаммов, устойчивых к L-лейцину.
Штаммы, устойчивые к L-лейцину и его аналогам, сконструированы из стандартного лабораторного штамма дикого типа E.coli K-12 путем ступенчатой селекции, как описано ниже. Мутант по каждой устойчивости отбирают из спонтанных мутантов. А именно E. coli K-12 или его мутант высевают на агар, содержащий L-лейцин или его аналог в различных концентрациях, указанных ниже. Затем отбирают выросший штамм.
Вначале до отбора штаммов, устойчивых к L-лейцину или его аналогу, отбирали мутантный штамм, устойчивый к 5 г/л L-валина, и получили штамм B-5 (Val-r). Из этого штамма получали мутантный штамм, устойчивый к 1 г/л L-лейцина, и обозначили его N 325 (Val-r, Leu-r). Затем мутантный штамм, устойчивый к 0,1 г/л 4-аза-D,L-лейцина (далее 4-азалейцин), отбирали из штамма N 325 и получили штамм N 244 (Val-r, Leu-r, AL-r). Из штамма N 244 получали штамм, устойчивый к 20 г/л 4-азалейцина, и получили штамм N 70 (Val-r, Leu-r, AL-rr). Символы Val-r, Leu-r, AL-r обозначают штамм с устойчивостью к L-валину, L-лейцину или 4-азалейцину соответственно. Символ AL-rr относится к штамму, в который дважды вводили устойчивость к азалейцину.
Взаимосвязь между устойчивостью к L-лейцину и продукцией L-лейцина.
Чтобы определить взаимосвязь между устойчивостью к L-лейцину и продукцией L-лейцина, были получены спонтанные мутанты штамма N 70, устойчивые к 15 г/л L-лейцина, методом, описанным выше. Семь случайных колоний штамма 70 и 10 случайно отобранных, устойчивых к лейцину мутантов штамма 70 сравнивали по продукции L-лейцина. Оказалось, что каждый из устойчивых к лейцину мутантов штамма N 70 превышал по продуктивности родительский штамм. Среднее увеличение продуктивности составило 60%.
Пример 2. Получение мутантов E.coli К-12, продуцирующих L-лейцин.
Штаммы, продуцирующие L-лейцин, получали ступенчатой селекцией штаммов, устойчивых к L-валину, 4-азалейцину, 3-гидроксилейцину и L-лейцину из Е. coli K-12, как описано ниже. Штаммы Е. coli K-12 высевали на агар с L-валином или аналогом лейцина или L-лейцином в различных концентрациях, указанных ниже. Затем отбирали выросший штамм.
Мутантный штамм, устойчивый к 5 г/л L-валина, отобрали из Е. coli K-12 и получили штамм N 101 (Val-r), который не синтезировал L-лейцин. Из штамма N 101 получили мутант, устойчивый к 4-азалейцину в концентрации 1,3 г/л. Полученный штамм N 51 (Val-r, AL-r) синтезировал 0,05-0,1 г/л лейцина. Затем штамм с устойчивостью к 2 г/л 3-гидрокси-D,L-лейцину (далее гидроксилейцин) получали из штамма N 51 и отобрали штамм N 4 (Val-r, AL-r Hleu-r). Символ Hleu-r относится к штамму с устойчивостью к гидроксилейцину. Штамм N 4 синтезировал больше лейцина (около 0,4-0,6 г/л).
Штамм N 4 обрабатывали НТГ и отобрали мутанты с устойчивостью к 15 г/л L-лейцина. В результате получили два мутантных штамма N 57 и N 103 (Val-r, AL-к Hieu-r Leu-r). Продукция лейцина этими штаммами составляла 1,5-1,7 г/л).
Указанные штаммы 4, 57 и 103 были заложены во Всероссийскую коллекцию промышленных микроорганизмов (Москва 113545, 1 Дорожный проезд, 1) на условиях Будапештского договора под указанными ниже коллекционными номерами: ВКПМ В-7387, ВКПМ В-7386, ВКПМ В-7388 соответственно.
Пример 3. Получение L-лейцина с использованием штаммов E.coli 57 и 103.
Клетки штаммов E.coli 57 и E.coli 103 выращивают при 37oC в течение 30 часов на агаризованной среде М9. Культуры засевают петлей в качалочные колбы объемом 250 мл, содержащие по 15 мл ферментационной среды следующего состава (%): глюкоза - 6; сульфат аммония - 1,5; гидрофосфат калия - 0,15; сульфат магния семиводный - 0,1; тиамин - 100 мкг/л; мел - 2,0. Культивирование проводят при 32oC в течение 48 часов на качалке, скорость вращения которой составляет 250 об/мин. Продукция лейцина для штамма 57 составила 1,5 г/л, для штамма 103 - 1,7 г/л.
Формула изобретения: 1. Штамм бактерий Escherichia coli ВКПМ В-7386 - продуцент L-лейцина.
2. Штамм бактерий Escherichia coli ВКПМ В-7388 - продуцент L-лейцина.