Forbidden

You don't have permission to access /zzz_siteguard.php on this server.

СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА - Патент РФ 2151121
Главная страница  |  Описание сайта  |  Контакты
СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА
СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА

СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА

Патент Российской Федерации
Суть изобретения: Изобретение относится к производству строительных материалов, в частности к получению пористых искусственных изделий, и может быть использовано при производстве гранулированного теплоизоляционного материала. Сырьевая смесь включает, мас. %: каустическую соду (в пересчете на Na2O) 5,74-6,13; микрокремнезем 43,0 - 45,9; бикарбонат натрия 0,57 - 1,21; вода - остальное. Способ получения гранулированного теплоизоляционного материала включает приготовление суспензии из каустической соды, воды, бикарбоната натрия и микрокремнезема, подогрев суспензии, грануляцию с последующей термообработкой сырцовых гранул, причем подогрев суспензии проводят при 110-120°С в течение 20-30 мин, а термообработку сырцовых гранул - при 350-400°С в течение 1 ч. Технический результат: повышение прочности гранул при сжатии, водостойкости и упрощение процесса производства. 2 с.п. ф-лы, 2 табл.
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2151121
Класс(ы) патента: C04B28/26, C04B28/26, C04B18:14, C04B111:20
Номер заявки: 98111269/03
Дата подачи заявки: 11.06.1998
Дата публикации: 20.06.2000
Заявитель(и): Братский индустриальный институт
Автор(ы): Радина Т.Н.; Стефанишин А.В.
Патентообладатель(и): Братский индустриальный институт
Описание изобретения: Изобретение относится к производству строительных материалов, в частности к получению пористых искусственных изделий, и может быть использовано при производстве гранулированного теплоизоляционного материала.
Известна сырьевая смесь для получения пеносиликатного теплоизоляционного материала, включающая жидкое стекло, поваренную соль и микрокремнезем - отход ферритового производства черной металлургии [1]. Способ изготовления пеносиликатного материала состоит в следующем: жидкое стекло предварительно разогревают до температуры 50-60oC и добавляют смесь микрокремнезема с поваренной солью при постоянном перемешивании до получения однородной массы. Затем эту массу загружают в формы и подвергают термообработке при 360+10oC в течение трех часов. После охлаждения пеносиликатный материал извлекают из формы и обрабатывают в изделия.
Недостатком известной композиции является низкая прочность материала, а также длительность термообработки и технологического процесса получения пеносиликатного изделия.
Наиболее близким техническим решением к предлагаемой сырьевой смеси и способу получения является сырьевая смесь и способ получения гранулированного теплоизоляционного материала из жидкого стекла - стеклопора [2]. Сырьевая смесь включает следующие компоненты: 93-95% жидкого стекла плотностью 1,4-1,45 г/см3, 7-5% тонкодисперсного наполнителя с удельной поверхностью 2000-3000 см2/г (например, золы ТЭС) и 0,5-1% гидрофобизующей добавки - кремнийорганической жидкости (например, ГКЖ-10). Способ изготовления стеклопора заключается в следующем: сырьевая смесь, перемешанная до однородного состояния, подается в капельном виде в раствор хлористого кальция с температурой 22-30oC и выдерживается в течение 40 мин для формирования гранул. Полученные сырцовые гранулы подсушиваются при температуре 85-90oC в течение 10-20 мин и затем вспучиваются при температуре 350-500oC в течение 1-3 мин.
Недостатком известной сырьевой смеси является низкая прочность и водостойкость полученного материала, сложность и длительность технологического процесса его изготовления, а также применение раствора хлористого кальция, вызывающего коррозию используемого оборудования.
Техническим результатом изобретения является повышение прочности при сжатии гранул, увеличение их водостойкости и упрощение процесса производства гранулированного теплоизоляционного материала.
Поставленный технический результат достигается тем, что сырьевая смесь для получения гранулированного теплоизоляционного материала, включающая каустическую соду, тонкодисперсный наполнитель и натриевую соль неорганической кислоты, содержит в качестве натриевой соли неорганической кислоты бикарбонат натрия, а в качестве тонкодисперсного наполнителя - микрокремнезем - отход производства кристаллического кремния при следующем соотношении компонентов, мас.%:
Каустическая сода (в пересчете на Na2O - 5,74-6,13
Микрокремнезем - 43,0 - 45,0
Бикарбонат натрия - 0,57 - 1,21
Вода - остальное
Микрокремнезем является отходом производства кристаллического кремния следующего химического состава, мас.%: SiO2 - 83 - 95, Fe2O3 - 0,1-0,3, CaO - 0,4-1,0, MgO - 0,3-0,8, Ma2O - 0,1-0,2, Al2O3 - 0,3-0,8, K2O - 0,04, примеси - 5-15. Насыпная плотность микрокремнезема составляет 0,370 г/см3, удельная поверхность - 25-50 тыс. см2/г.
Свойства микрокремнезема соответствуют требованиям технических условий ТУ-7-249583-01-90.
Каустическая сода (гидроксид натрия) соответствует требованиям ГОСТ 2263-79 и может быть использована в виде водного раствора различной концентрации. Расчет количества каустической соды в составе сырьевой смеси производится в пересчете на Na2O.
Бикарбонат натрия соответствует требованиям ГОСТ 2156-76.
Способ приготовления гранулированного теплоизоляционного материала заключается в следующем: каустическую соду, воду и бикарбонат натрия перемешивают в течение 5-10 с, добавляют микрокремнезем и снова перемешивают до получения однородной суспензии (в течение 2-3 мин), которую подвергают термообработке в течение 20-30 мин при температуре 110-120oC. Полученную массу гранулируют в тарельчатом грануляторе и сырцовые гранулы сушат при температуре 350-400oC в течение 1 ч.
Составы предлагаемой и известной сырьевой смеси указаны в таблице 1, свойства гранулированного теплоизоляционного материала из этих составов - в таблице 2.
Как видно из таблицы 2, предлагаемый гранулированный утеплитель отличается от известного повышенной прочностью (примерно в 4-10 раз) и водостойкостью гранул.
Предлагаемый способ отличается от известного простотой и меньшей длительностью технологического процесса, а также меньшей энергоемкостью процесса производства гранулированного утеплителя, так как отсутствует необходимость использования силикат-глыбы и дальнейшего ее растворения в автоклавах для получения жидкого стекла. Кроме того, в предлагаемом способе не используется раствор хлористого кальция, который вызывает коррозию оборудования и требует применения специальных, не подверженных коррозии металлов, что, в конечном итоге, значительно повышает стоимость технологической линии по выпуску стеклопора.
Использование промышленных техногенных отходов в составе предлагаемой сырьевой смеси для гранулированного теплоизоляционного материала способствует улучшению экологической ситуации в регионе.
Источники информации.
1. А.с. 1706997, кл. C 04 B 28/26, 38/00.
2. Горлов Ю.П. Технология теплоизоляционных и акустических материалов и изделий: М.: Высшая школа, 1989. - 384 с.
Формула изобретения: 1. Сырьевая смесь для теплоизоляционного материала, включающая тонкодисперсный наполнитель, натриевую соль неорганической кислоты и воду, отличающаяся тем, что она дополнительно содержит каустическую соду и в качестве наполнителя микрокремнезем - отход производства кристаллического кремния, а в качестве натриевой соли неорганической кислоты - бикарбонат натрия при следующем соотношении компонентов, мас.%:
Каустическая сода (в пересчете на Na2O) - 5,74 - 6,13
Микрокремнезем - 43,0 - 45,9
Бикарбонат натрия - 0,57 - 1,21
Вода - Остальное
2. Способ получения гранулированного теплоизоляционного материала из сырьевой смеси по п.1, включающий приготовление суспензии из каустической соды, воды, бикарбоната натрия и микрокремнезема, подогрев суспензии, грануляцию с последующей термообработкой сырцовых гранул, причем подогрев суспензии проводят при 110 - 120oС в течение 20 - 30 мин, а термообработку сырцовых гранул - при 350 - 400oС в течение 1 ч.