Forbidden

You don't have permission to access /zzz_siteguard.php on this server.

ЭЛЕКТРОПРИВОД ПОСТОЯННОГО ТОКА - Патент РФ 2158468
Главная страница  |  Описание сайта  |  Контакты
ЭЛЕКТРОПРИВОД ПОСТОЯННОГО ТОКА
ЭЛЕКТРОПРИВОД ПОСТОЯННОГО ТОКА

ЭЛЕКТРОПРИВОД ПОСТОЯННОГО ТОКА

Патент Российской Федерации
Суть изобретения: Изобретение относится к электротехнике и может использоваться для регулирования частоты вращения (ЧВ) электроприводов постоянного тока. Сущность изобретения заключается в том, что в известный электропривод постоянного тока (называемый трехкратноинтегрирующей CAP частоты вращения электропривода постоянного тока) введены датчик напряжения, три апериодических блока, интегрирующий блок, три пропорциональных блока и два инерционно-дифференцирующих блока. Технический результат: достижение нулевой статической ошибки регулирования тока и минимально возможной ошибки регулирования ЧВ при отработке управляющего сигнала, увеличение быстродействия контуров регулирования тока и ЧВ соответственно в два и шестнадцать раз, уменьшение динамической ошибки регулирования ЧВ при ступенчатом внешнем воздействии по нагрузке в шестьдесят раз. Кроме того, заявленный электропривод, как и прототип, обладает астатизмом второго порядка относительно возмущающего воздействия. 1 ил.
Поиск по сайту

1. С помощью поисковых систем

   С помощью Google:    

2. Экспресс-поиск по номеру патента


введите номер патента (7 цифр)

3. По номеру патента и году публикации

2000000 ... 2099999   (1994-1997 гг.)

2100000 ... 2199999   (1997-2003 гг.)
Номер патента: 2158468
Класс(ы) патента: H02P5/06
Номер заявки: 98109666/09
Дата подачи заявки: 20.05.1998
Дата публикации: 27.10.2000
Заявитель(и): Кубанский государственный технологический университет
Автор(ы): Добробаба Ю.П.; Нестеров С.В.; Чумак А.Ю.; Акулов О.В.
Патентообладатель(и): Кубанский государственный технологический университет
Описание изобретения: Изобретение относится к электротехнике и может использоваться для регулирования частоты вращения (ЧВ) электроприводов постоянного тока, к которым предъявляются следующие требования: отсутствие статической ошибки регулирования тока; астатизм второго порядка относительно возмущающего воздействия; минимальная ошибка регулирования ЧВ при отработке управляющего сигнала; максимальное быстродействие контуров регулирования тока и ЧВ; минимальная динамическая ошибка регулирования ЧВ при ступенчатом внешнем воздействии по нагрузке.
Наиболее близким к заявляемому электроприводу является электропривод постоянного тока (называемый трехкратноинтегрирующей САР частоты вращения электропривода постоянного тока) /1/, который принимается за прототип.
Прототип содержит электродвигатель постоянного тока, подключенный к тиристорному силовому блоку и соединенный с механизмом, последовательно соединенные задатчик ЧВ и фильтр, последовательно соединенные регулятор ЧВ, регулятор тока и систему формирования импульсов, выход которой подключен к входу тиристорного силового блока, датчик тока, датчик ЧВ.
При эксплуатации прототипа обнаружены следующие недостатки:
1. Статическая ошибка регулирования тока, обусловленная влиянием обратной связи по ЭДС электродвигателя.
2. Значительная ошибка регулирования ЧВ при отработке управляющего сигнала.
3. Низкое быстродействие контуров регулирования тока и ЧВ.
4. Значительная динамическая ошибка регулирования ЧВ при ступенчатом внешнем воздействии по нагрузке.
Задача, решаемая изобретением, заключается в устранении статической ошибки регулирования тока, уменьшении ошибки регулирования ЧВ при отработке управляющего сигнала, увеличении быстродействия контуров регулирования тока и ЧВ, уменьшении динамической ошибки регулирования ЧВ при ступенчатом внешнем воздействии по нагрузке.
Техническим результатом от использования изобретения является повышение качества регулирования тока и ЧВ электропривода постоянного тока.
Указанный технический результат достигается тем, что в известный электропривод постоянного тока введены датчик напряжения, первый апериодический (А) блок, включенный между выходом фильтра и первым входом регулятора ЧВ, интегрирующий блок, вход которого соединен с выходом регулятора тока, а выход подключен к второму входу системы формирования импульсов, первый пропорциональный (П) блок, второй П блок, третий П блок, причем входы первого и второго П блоков соединены с выходами соответственно датчиков тока и ЧВ, а их выходы соединены соответственно с вторым и третьим входами третьего П блока, первый вход которого соединен с выходом датчика напряжения, а выход подключен к четвертому входу регулятора тока, первый инерционно-дифференцирующий (ИД) блок и второй А блок, входы которых соединены с выходом датчика тока, а выходы подключены соответственно к третьему и второму входам регулятора тока, второй ИД блок и третий А блок, входы которых соединены с выходом датчика ЧВ, а выходы подключены соответственно к третьему и второму входам регулятора ЧВ.
Таким образом, введение первого А блока, интегрирующего блока, датчика напряжения и названных блоков корректирующих обратных связей позволило получить передаточные функции контуров регулирования тока и ЧВ по управляющему и возмущающему воздействиям заявляемого электропривода в виде




где IЯ - ток якорной цепи электродвигателя;
UЗТ - задающее напряжение контура регулирования тока;
kОТ - коэффициент обратной связи по току;
Tμ - некомпенсированная постоянная времени;
p - комплексный параметр преобразования Лапласа;
MС - момент сопротивления;
cе; cм - коэффициенты электродвигателя;
LЯ - индуктивность якорной цепи электродвигателя;
J - момент инерции электропривода;
ω - ЧВ электропривода;
UЗЧВ - задающее напряжение контура регулирования ЧВ;
kОЧВ - коэффициент обратной связи по ЧВ.
Передаточной функции контура регулирования тока по каналу управления "задающее напряжение контура тока - ток якорной цепи электродвигателя" соответствует максимально плоская амплитудно- частотная характеристика (АЧХ), т. е. данный контур отрабатывает управляющий сигнал с минимально возможной ошибкой.
Передаточной функции контура регулирования ЧВ по каналу управления "задающее напряжение контура ЧВ - ЧВ электропривода" соответствует максимально плоская АЧХ, т. е. данный контур отрабатывает управляющий сигнал с минимально возможной ошибкой.
Следовательно, достигнуты нулевая статическая ошибка регулирования тока и минимально возможная ошибка регулирования ЧВ при отработке управляющего сигнала, увеличено быстродействие контуров регулирования тока и ЧВ соответственно в два и шестнадцать раз, уменьшена динамическая ошибка регулирования ЧВ при ступенчатом внешнем воздействии по нагрузке в шестьдесят раз. Кроме того, заявленный электропривод, как и прототип, обладает астатизмом второго порядка относительно возмущающего воздействия.
Таким образом, заявленный электропривод обеспечивает повышение качества регулирования тока и ЧВ.
На чертеже представлена структурная схема электропривода постоянного тока.
Электропривод постоянного тока содержит электродвигатель 1 постоянного тока, подключенный к тиристорному силовому блоку 2 и соединенный с механизмом, последовательно соединенные задатчик 3 ЧВ, фильтр 4, выполненный в виде колебательного блока, первый А блок 5, регулятор 6 ЧВ, выполненный в виде пропорционально-интегрально двукратноинтегрирующего блока, регулятор 7 тока, выполненный в виде пропорционально-интегрирующего блока, систему 8 формирования импульсов, выход которой подключен к входу тиристорного силового блока 2, интегрирующий блок 9, вход которого соединен с выходом регулятора 7 тока, а выход подключен к второму входу системы 8 формирования импульсов, датчик 10 напряжения, датчик 11 тока, датчик 12 ЧВ, первый П блок 13, второй П блок 14, третий П блок 15, причем входы первого П блока 13 и второго П блока 14 соединены с выходами соответственно датчика 11 тока и датчика 12 ЧВ, а их выходы соединены соответственно с вторым и третьим входами третьего П блока 15, первый вход которого соединен с выходом датчика 10 напряжения, а выход подключен к четвертому входу регулятора 7 тока, первый ИД блок 16, второй А блок 17, входы которых соединены с выходом датчика 11 тока, а выходы подключены соответственно к третьему и второму входам регулятора 7 тока, второй ИД блок 18, третий А блок 19, входы которых соединены с выходом датчика 12 ЧВ, а выходы подключены соответственно к третьему и второму входам регулятора 6 ЧВ.
Электропривод постоянного тока работает следующим образом.
Сигнал с выхода задатчика 3 ЧВ, проходя через фильтр 4 и первый А блок 5, поступает на первый вход регулятора 6 ЧВ, на другие входы которого поступают сигналы гибких отрицательных обратных связей по ЧВ. Регулятор 6 ЧВ совместно с блоками 18 и 19 указанных обратных связей формирует зависимость ЧВ электропривода от времени ω (t). Сигнал с выхода регулятора 6 ЧВ поступает на первый вход регулятора 7 тока, на другие входы которого поступают сигналы жестких отрицательных обратных связей по напряжению, току якорной цепи и ЧВ, а также сигналы гибких отрицательных обратных связей по току якорной цепи. Регулятор 7 тока совместно с интегрирующим блоком 9 и блоками 13 - 17 указанных обратных связей формирует зависимость тока якорной цепи от времени IЯ(t). Сигнал с выхода регулятора 7 тока поступает на вход интегрирующего блока 9 и первый вход системы 8 формирования импульсов, на второй вход которой поступает сигнал с выхода интегрирующего блока 9. Система 8 формирования импульсов подает импульсы на открытие тиристоров тиристорного силового блока 2. Время подачи импульсов, а следовательно и напряжение, приложенное к якорной цепи электродвигателя, определяются значением сигналов на выходе регулятора 7 тока и интегрирующего блока 9.
Таким образом, качество регулирования тока и ЧВ электропривода постоянного тока определяется настройкой регуляторов тока и ЧВ, фильтра, первого А блока, интегрирующего блока и блоков корректирующих обратных связей.
ЛИТЕРАТУРА
1. Справочник по проектированию автоматизированного электропривода и систем управления технологическими процессами/ Под ред. В.И.Круповича, Ю.Г. Барыбина, М. Л.Самовера.- 3-е изд. перераб. и доп.- М.: Энергоиздат, 1982.- 422 с.
Формула изобретения: Электропривод постоянного тока, содержащий электродвигатель постоянного тока, подключенный к тиристорному силовому блоку и соединенный с механизмом, последовательно соединенные задатчик частоты вращения и фильтр, выполненный в виде колебательного блока, последовательно соединенные регулятор частоты вращения, выполненный в виде пропорционально-интегрально двукратноинтегрирующего блока, регулятор тока, выполненный в виде пропорционально-интегрирующего блока и систему формирования импульсов, подающую импульсы на открытие тиристоров тиристорного силового блока, выход которой подключен к входу тиристорного силового блока, датчик тока, датчик частоты вращения, отличающийся тем, что в него введены датчик напряжения, первый апериодический блок, включенный между выходом фильтра и первым входом регулятора частоты вращения, интегрирующий блок, вход которого соединен с выходом регулятора тока, а выход подключен к второму входу системы формирования импульсов, причем время подачи импульсов, а следовательно и напряжение, приложенное к якорной цепи электродвигателя, определяются значениями сигналов на выходах регулятора тока и интегрирующего блока, первый пропорциональный блок, второй пропорциональный блок, третий пропорциональный блок, реализующие, совместно с датчиками напряжения, тока и частоты вращения, жесткие отрицательные обратные связи по напряжению, току якорной цепи и частоте вращения, причем входы первого и второго пропорциональных блоков соединены с выходами соответственно датчиков тока и частоты вращения, а их выходы соединены соответственно с вторым и третьим входами третьего пропорционального блока, первый вход которого соединен с выходом датчика напряжения, а выход подключен к четвертому входу регулятора тока, первый инерционно-дифференцирующий блок и второй апериодический блок, реализующие, совместно с датчиком тока, гибкие отрицательные обратные связи по току якорной цепи, входы которых соединены с выходом датчика тока, а выходы подключены соответственно к третьему и второму входам регулятора тока, второй инерционно-дифференцирующий блок и третий апериодический блок, реализующие совместно с датчиком частоты вращения, гибкие отрицательные обратные связи по частоте вращения, входы которых соединены с выходом датчика частоты вращения, а выходы подключены соответственно к третьему и второму входам регулятора частоты вращения.