Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2451008

(19)

RU

(11)

2451008

(13)

C2

(51) МПК C07C201/08 (2006.01)

C07C205/06 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 27.08.2012 - действует Пошлина: учтена за 3 год с 19.05.2012 по 18.05.2013

(21), (22) Заявка: 2010119973/04, 18.05.2010

(24) Дата начала отсчета срока действия патента:

18.05.2010

Приоритет(ы):

(22) Дата подачи заявки: 18.05.2010

(43) Дата публикации заявки: 27.11.2011

(45) Опубликовано: 20.05.2012

(56) Список документов, цитированных в отчете о

поиске: RU 2309142 C1, 27.10.2007. US 4234470 A, 18.11.1980. RU 2095342 C1, 10.11.1997. US 5030776 A1, 09.07.1991.

Адрес для переписки:

193232, Санкт-Петербург, ул. Крыленко, 26А, ФГУП "РНЦ "Прикладная химия"

(72) Автор(ы):

Козлова Ольга Викторовна (RU),

Терещук Лариса Степановна (RU),

Мызников Александр Валерьевич (RU),

Зубрицкая Наталья Георгиевна (RU),

Базанов Анатолий Григорьевич (RU),

Тимофеев Сергей Васильевич (RU)

(73) Патентообладатель(и):

Федеральное государственное унитарное предприятие "Российский научный центр "Прикладная химия" (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ НИТРОБЕНЗОЛА

(57) Реферат:

Изобретение относится к способу получения нитробензола, включающего газофазное нитрование бензола разбавленной азотной кислотой в присутствии гетерогенного катализатора, содержащего перфорированный ион-обменный полимер с концевыми сульфогруппами в количестве от 1,0 до 39% масс., и оксид кремния, прекурсором которого являются органические силикаты тетраэтилортосиликат, тетраметилортосиликат, тетрапропилортосиликат и тетрабутилортосиликат. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области синтеза ароматических нитросоединений, которые являются исходным сырьем в разнообразных органических синтезах. Одним из нитропродуктов является нитробензол - продукт для анилинокрасочной, фармацевтической промышленности и получения полиуретанов.

В промышленности нитробензол получают нитрованием бензола так называемыми кислотными смесями, то есть смесями, состоящими из азотной и серной кислот, а также некоторого количества воды.

В ходе реакции азотная кислота полностью или частично расходуется, а образующаяся вода должна быть тем или иным способом отделена от серной кислоты, служащей катализатором и средой, с целью ее возвращения в процесс нитрования. Возникающий таким образом «кислотооборот» обусловливает существенные аппаратурно-технологические, экономические и экологические недостатки жидкофазного способа нитрования [Горелик М.В., Эфрос Л.С. Основы химии и технологии ароматических соединений. М.: Химия, 1992, с.139-150].

Другим важным недостатком этого метода является образование большого количества побочных продуктов реакции - нитрофенолов, содержание которых в сыром нитробензоле достигает 2000 ppm, что по ряду причин (цветность, токсичность и т.д.) совершенно недопустимо и влечет за собой необходимость многоступенчатой промывки с образованием большого объема сточных вод.

Избежать недостатков, присущих жидкофазному способу получения нитробензола с использованием смеси концентрированных азотной и серной кислот, позволяет способ получения нитробензола на твердых катализаторах в газовой фазе разбавленной 65-70%-ной азотной кислотой [Заявка Японии 53012823 МПК C07B 61/00, C07C 201/00, опубл. 4.02.1978] с использованием катализатора, представляющего собой неорганическую кислоту (серную или фосфорную), нанесенную на носитель. Однако этот способ имеет существенный недостаток, а именно нестабильность и короткий срок активной работы катализатора, который обусловлен вымыванием кислоты с поверхности.

Проблема вымывания неорганической кислоты с поверхности носителя [Европейская заявка 402207 МПК C07B 61/00, C07C 201/08, опубл. 12.12.1990] решается за счет восполнения потерь серной кислоты введением в реакционную массу небольших количеств свежей кислоты, обеспечивая соотношение серная кислота:азотная кислота, равным 1/500-1/10000 масс. Однако в данной заявке не затронут вопрос образования побочных продуктов окисления - нитрофенолов, содержание которых в нитробензоле имеет существенное значение при оценке качества получаемого нитробензола.

Известны способы получения нитробензола в газовой фазе, использующие в качестве катализатора алюмосиликаты с функцией кислотности Гаммета H O <-3 и H O <-8 [заявка Японии 58183644, МПК: C07B 61/00; B01J 21/00, опубл 26.10.1983] и кристаллические алюмосиликаты - цеолиты ZSM-5 с модулем 8,3 или ZSM-48 с модулем 3,4 [заявка Японии 1392169, МПК: C07B 61/00, B01J 29/16, опубл. 19.09.1983]. Известен способ газофазного нитрования бензола азотной кислотой, где в качестве катализатора применяют цеолит морденит с мольным отношением SiO 2 :Al 2 O 3 больше чем 12 [Заявка Канады 2084387, МПК C07B 61/00, B01J 29/18, опубл. 05.06.1993].

Предложенные в данных патентах катализаторы имеют высокую активность и селективность. При этом в качестве побочных продуктов определяется лишь динитробензол, не уделяется внимания образованию нитрофенолов. Недостатком данных изобретений также является и низкая производительность катализаторов.

Известны также способы нитрования ароматических углеводородов в паровой фазе, где применяются катализаторы на основе органических кислотных агентов. Так, описан способ получения нитробензола в присутствии гранул перфторполимера типа Нафион [заявка Японии 500154212, МПК C07C 79/10, опубл. 12.12.1975]. Однако данный материал является непористым, поэтому малоактивным. Кроме того, частицы органического полимерного материала при высоких температурах в течение весьма короткого времени разрушаются и деформируются.

Наиболее близким к предлагаемому изобретению является процесс газофазного нитрования бензола разбавленной азотной кислотой в присутствии катализатора на основе полимера фторсульфоновой кислоты, смешанного с карбидом кремния, SiO 2, Al 2 O 3 и др. [Патент США 4234470, МПК C07C 79/10, опубл. 18.11.1980].

Способ приготовления катализатора нитрования заключается в смешении перфторполисульфокислоты с частицами SiO 2 , Al 2 O 3 и др., отвечающего трем критериям: во-первых, композит должен быть гранулированным, во-вторых, быть инертным к условиям протекания реакции нитрования, в-третьих, не должен разрушаться в процессе нитрования во времени. В качестве таких композитов могут выступать карбид кремния, силикагели, окись алюминия и др. Заявленное соотношение полимер:оксид кремния лежит в интервале от 40:60 до 60:40% масс. Существенным недостатком данного изобретения является низкая активность катализатора, короткий срок стабильной работы (30 часов) и высокая цена катализатора из-за высокого содержания полимера в нем.

Задача предлагаемого изобретения - получение продукта высокого качества с высоким выходом.

Сущность предлагаемого изобретения - получение нитробензола газофазным нитрованием бензола разбавленной азотной кислотой в присутствии гетерогенного катализатора, содержащего перфорированный ион-обменный полимер с концевыми сульфогруппами и оксид кремния, причем катализатор получают золь-гельным методом.

Преимуществом разрабатываемого способа газофазного нитрования бензола является использование катализатора, включающего перфорированный полимер, содержание которого составляет от 1 до 39 масс.%. Вышеуказанное количество позволяет придать катализатору высококислотные свойства наряду с оптимальной текстурой поверхности (высокая общая удельная поверхность и оптимальный размер пор). При этом катализатор имеет удельную поверхность 80-600 м 2 /г, объем пор не менее 0,2 см 3 /г с преобладающим размером пор от 30 до 800 Å и силу кислотных центров по шкале Гаммета <минус 8, и катализатор имеет форму цилиндрических гранул диаметром 3-10 мм с прочностью при раздавливании на торец 5-40 МПа и насыпной плотностью 0,4-0,9 кг/дм 3 .

Перфорированные ион-обменные полимеры являются сополимерами двух мономеров - тетрафторэтилена (Тефлона) и перфтор-3,6-диокси-4-метил-7-октен-сульфокислоты. Полимеры используют в растворе. Возможно использование для приготовления катализатора нитрования коммерческого раствора полимера (5%-ный раствор перфторполимера Нафиона в смеси низшего алифатического спирта и воды) [Cat 27. 470-Å, Aldrich Chemical Company, Inc.940 West Saint Paul Avenue, Milwaukee, Wis 53233], или раствор полимера получают выдерживанием полимера в растворителе (этанол-вода при равном объемном отношении компонентов) в автоклаве при 240°C в течение 5 часов при перемешивании.

В качестве прекурсора оксида кремния используют соединения, выбранные из группы органических силикатов, включающей тетраэтоксисилан (тетраэтилортосиликат), тетраметоксисилан (тетраметилортосиликат), тетрапропилортосиликат, тетрабутилортосиликат.

Растворителем может служить смесь воды с различными низкими алифатическими спиртами, такими как метанол, этанол, 1-пропанол, 2-пропанол или их смеси и н-бутанол, а также можно использовать другие полярные растворители: ацетонитрил, диметилформамид, тетрагидрофуран, ацетон и толуол.

Для образования геля растворы полимера и прекурсора оксида кремния быстро перемешивают при комнатной температуре в течение 10 секунд. Затем гель подвергают старению при комнатной температуре в течение 24 часов, сушат при 90°C в токе азота в течение 15 часов, и далее 15 часов при 140°C в вакууме. Полученный материал обрабатывают 5-20%-ным раствором кислоты, выбранной из группы, включающей: серную, азотную, соляную, фосфорную, в течение одного часа, фильтруют, 2 раза промывают водой и сушат при 140°C в течение 24 часов.

Для обеспечения заявляемых свойств по форме, размеру, прочности и насыпной плотности гранул порошки катализаторов формуют в цилиндрические гранулы диаметром 3-10 мм либо методом экструзии, либо методом таблетирования в заявленных условиях.

Экструзионную грануляцию проводят из катализаторной массы, полученной смешением порошка композита на основе перфторполимера и оксида кремния с размерами частиц 0,05-1,0 мм, предпочтительно 0,1-0,25 мм с водой и со структурообразующими добавками с последующей сушкой экструдированных гранул на воздухе при температуре (100±10)°C.

Количество добавляемой воды должно обеспечить влажность катализаторной массы для экструзионной формовки 35-55%, предпочтительно 40-50%. Большая влажность приведет к снижению прочности гранул, меньшая - к уменьшению пористости.

В качестве структурообразующих добавок используют соединения, выбранные из группы, включающей поливиниловый спирт (ПВС), полиэтиленоксид (ПЭО), графит и/или кислоты, выбранные из группы: азотная, соляная, уксусная. Эти добавки улучшают реологические свойства пасты и увеличивают прочность готовых таблеток.

Количество структурообразующих добавок составляет 0,1-3,0 масс.% в пересчете на сухие продукты.

Грануляцию методом таблетирования проводят из порошка катализаторной массы на основе перфторполимера и оксида кремния с размером частиц 0,1-1,0 мм, предпочтительно 0,25-0,50 мм с добавлением структурообразующей добавки - графита в количестве 0,1-0,3 масс.%. Выбор размера частиц и тип структурообразующей добавки обусловливает требуемую пористую структуру и прочность. Полученную шихту таблетируют на таблетмашине в гранулы с диаметром 3-10 мм, высотой 4-5 мм.

Преимущество данного изобретения заключается в том, что при проведении нитрования бензола разбавленной азотной кислотой на предлагаемом катализаторе достигается высокая активность катализатора, и катализатор имеет хорошие эксплуатационные свойства на протяжении длительного срока эксплуатации.

Процесс проводят следующим образом

В проточный реактор длиной 30 см с внутренним диаметром 2,5 см загружали 20 см 3 стеклянной насадки 4·4 мм, среднюю часть реактора заполняли 50 см 3 гранулированного катализатора, который содержал перфторполимер в количестве 33% масс. и оксид кремния, в верхнюю часть реактора также засыпали стеклянную насадку.

Дозировочными насосами через испарители, нагретые до 170°C, непрерывно в течение не менее 3 часов подавали 13 мл/ч бензола и 5 мл/ч 65%-ной азотной кислоты. В реактор, работающий при атмосферном давлении и температуре 150°C, непрерывно подавался очищенный от кислорода и влаги азот со скоростью 3,2 л/ч. Катализат поступал в охлажденный до 0°C приемник, в котором происходила конденсация жидкой фазы. Отходящие газы барбатировали через 10%-ный водный раствор гидроокиси натрия. Жидкий конденсат разделяли на органическую и кислотную фазы и анализировали. Конверсию азотной кислоты рассчитывали по ее остаточному количеству, определенному титрованием кислотной фракции катализата и щелочного поглотителя. Конверсию бензола определяли на основании анализа органической фракции на содержание бензола и нитробензола методом газовой хроматографии на хроматографе Hewlett-Packard 6890 с пламенно-ионизационным детектором, капиллярной кварцевой колонкой Hewlett-Packard-5 3000·0,32 мм с программированием температуры до 250°C, температура инжектора 200°C, детектора 250°C, газ-носитель-азот.

Содержание нитрофенолов определяли методом высокоэффективной жидкостной хроматографии на хроматографе Hewlett-Packard 1090 со спектрофотометрическим детектором на диодной матрице, колонка 125·4 мм Chromasil-100-5c18, элюенты - раствор уксусной кислоты в воде, ацетонитрил, скорость потока 0,5 мл/мин.

Конверсия азотной кислоты при использовании данного катализатора составляет 89,4%, конверсия бензола 92,2%, содержание побочного динитробензола в нитробензоле после отгонки непрореагировавшего бензола составила 0,03% масс., содержание нитрофенолов - 133,6 ppm (2-нитрофенола - 15 ppm; 4-нитрофенола <0,1 ppm; 2,4-динитрофенола - 35,3 ppm; 2,6-динитрофенола <0,1 ppm; 2,4,6-тринитрофенола - 83,1 ppm).

В таблице приведены результаты процесса нитрования бензола при различных соотношениях перфторполимера и прекурсора оксида кремния, выбранного из предлагаемой группы веществ.

Из таблицы видно, что способ получения газофазного нитрования бензола в присутствии катализатора с предлагаемыми свойствами обеспечивают высокий выход нитробензола и его качество.

Формула изобретения

1. Способ получения нитробензола, включающий газофазное нитрование бензола разбавленной азотной кислотой в присутствии гетерогенного катализатора, содержащего перфторированный ион-обменный полимер с концевыми сульфогруппами и оксид кремния, отличающийся тем, что катализатор содержит перфторированный ион-обменный полимер в количестве 1,0-39 мас.% и оксид кремния, прекурсором которого являются органические силикаты.

2. Способ по п.1, отличающийся тем, что органические силикаты включают тетраэтилортосиликат, тетраметилортосиликат, тетрапропилортосиликат и тетрабутилортосиликат.