Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2452499

(19)

RU

(11)

2452499

(13)

C1

(51) МПК A61K33/44 (2006.01)

C01B31/08 (2006.01)

B01J20/20 (2006.01)

B01J20/30 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 27.08.2012 - действует Пошлина: учтена за 3 год с 09.04.2013 по 08.04.2014

(21), (22) Заявка: 2011113927/15, 08.04.2011

(24) Дата начала отсчета срока действия патента:

08.04.2011

Приоритет(ы):

(22) Дата подачи заявки: 08.04.2011

(45) Опубликовано: 10.06.2012

(56) Список документов, цитированных в отчете о

поиске: RU 2362733 C1, 27.07.2009. RU 2090186 C1, 20.09.1997. RU 2161987 C2, 20.01.2001. А.В.ВЕСЕЛОВСКАЯ и др. Адсорбция белков на углеродных сорбентах, модифицированных кислородсодержащими группами. Опубликовано 26.03.2010. [он-лайн] [найдено 08.11.11]. Найдено в Интернет . ВЕСЕЛОВСКАЯ А.В. и др. Особенностиадсорбции белка альбумина на образцах углеродного гемосорбента. // Материалы Всероссийской научной молодежной школы-конференции «Химия под знаком Сигма: исследования, инновации, технологии». - Омск, 19-23 мая 2008, с.62-64. ГРИГОРЬЕВ И.В. и др. Модифицирование углеродных сорбентов азот- и кислородсодержащими группами путем нанесения мономеров с их последующей полимеризации. // Материалы Всероссийской научной молодежной школы-конференции «Химия под знаком Сигма: исследования, инновации, технологии». - Омск, 19-23 мая 2008, с.84-85.

Адрес для переписки:

644018, г.Омск, ул. 5-я Кордная, 29, ИППУ СО РАН, патентная служба

(72) Автор(ы):

Лихолобов Владимир Александрович (RU),

Пьянова Лидия Георгиевна (RU),

Бакланова Ольга Николаевна (RU),

Долгих Татьяна Ивановна (RU),

Седанова Анна Викторовна (RU),

Княжева Ольга Алексеевна (RU),

Кнорре Дмитрий Георгиевич (RU),

Годовикова Татьяна Сергеевна (RU)

(73) Патентообладатель(и):

Учреждение Российской академии наук Институт проблем переработки углеводородов Сибирского отделения РАН (ИППУ СО РАН) (RU),

Учреждение Российской академии наук Институт химической биологии и фундаментальной медицины Сибирского отделения РАН (ИХБФМ СО РАН) (RU)

(54) СПОСОБ МОДИФИЦИРОВАНИЯ УГЛЕРОДНОГО ГЕМОСОРБЕНТА И УГЛЕРОДНЫЙ ГЕМОСОРБЕНТ С ИММОБИЛИЗОВАННЫМ БЕЛКОМ

(57) Реферат:

Изобретение относится к области медицины и касается способа модифицирования углеродного гемосорбента, включающего обработку водным раствором оксикислоты с концентрацией 5-20% при соотношении гемосорбент : раствор оксикислоты 1:10-1:20 при температуре 25°С в течение 2-4 ч с последующим декантированием и выдержкой пропитанного гемосорбента в инертной среде в течение 0,25-6 ч при температуре 120-350°С, кипячением в дистиллированной воде в течение 1-2 ч, сушкой и последующей пропиткой 1М растворами N,N'-дициклогексилкарбодиимида и пентафторфенола в диметиламиде при перемешивании реакционной смеси в течение 0,5-3 ч с последующим добавлением приготовленного в буферном растворе с рН 7,3-7,5 сывороточного альбумина с концентрацией 0,5-2,0 мг/мл при перемешивании в течение 16-24 ч, отмывку 0,9% раствором хлорида натрия. Изобретение также касается гемосорбента, полученного указанным способом.

Изобретение обеспечивает гемосорбенты с высокой адсорбционной активностью, позволяющие селективно сорбировать вещества пептидной природы, в том числе белки, которые появляются и накапливаются в организме при определенных заболеваниях. 2 н.п. ф-лы, 4 ил., 1 табл., 4 пр.

Изобретение относится к технологии получения сорбентов с иммобилизованным белком, позволяющих селективно сорбировать вещества пептидной природы, в том числе белки, которые появляются и накапливаются в организме при определенных заболеваниях. Предназначено для применения в сорбционной терапии, протеомике, медицинской диагностике, биотехнологии.

В настоящее время уделяется большое внимание созданию гемосорбентов, избирательно поглощающих из крови токсические вещества белкового происхождения, накапливающиеся в организме при развитии патологических процессов (онкологических, аутоиммунных и т.д.). Создание сорбентов с повышенной адсорбционной активностью по отношению к веществам белковой природы путем регулирования химической природы их поверхности (химическое модифицирование) позволяет создать широкий спектр эффективных сорбентов, специфически связывающих пептиды и белки. В качестве матрицы для производства специфических сорбентов все большее применение находят углеродные сорбенты. Данный выбор обусловлен рядом их уникальных свойств, прежде всего хорошей совместимостью с биологическими жидкостями и инертностью к тканям внутренних органов, а также высокой прочностью их гранул.

Известны способы получения биосовместимых и селективных гемосорбентов введением разнополярных групп, капсулированием и нанесением полимерного слоя на поверхность сорбента (В.В.Стрелко, С.В.Михайловский, Н.В.Сухаренко, Н.Т.Картель и др. О возможности создания биоспецифических материалов на основе биосовместимых углеродных матриц. // Доклады АН СССР. Т.274. 5. С.1236-1239; Горчаков В.Д., Сергиенко В.И. Селективные гемосорбенты. - М.: Медицина, 1989. С.139-147; Бакалинская О.Н., Сухаренко Н.В., Стрелко В.В Сорбционные свойства углеродных гемосорбентов с иммобилизованными белками. // Украинский химический журнал, 1989, 12. С.1273-1276; Лисичкин Г.В. Химия привитых поверхностных соединений. - М.: Физматлит, 2003, 592 с; патент РФ 2064429).

Известен способ модифицирования углеродных сорбентов за счет покрытия его поверхности пленкой альбумина (Albumin Coated Activated Charcoal, АСАС-угли) (Terman D.S. Extracorporeal immunoadsorbens for extraction of circulating immune reactants // Sorbents and their clinical applications / Ed. C.Giordano. - N.-Y. - London Academic Press. 1980. - P.469-491).

Данные способы модифицирования направлены на улучшение качества углеродных адсорбентов: повышение прочности гранул и снижение «пылевыделения» в раствор адсорбата, выравнивание рельефа поверхности модифицирующей пленкой, повышение совместимости с биологической жидкостью. Однако основным недостатком данных способов модифицирования является практически полное закрытие пор в сорбентах пленкой полимерного модификатора, приводящее к ухудшению динамики процесса сорбции биологических жидкостей.

Известен способ получения гемосорбента, включающий модифицирование активированного угля путем его обработки метилтолуолсульфонат-N-циклогексил-N-1-(2-морфолинил-4-этил)карбодиимидом в присутствии меланина при их массовом соотношении (2,3-2,6):1 соответственно и инкубацию модифицированного угля в присутствии глутатиона (патент РФ 2316392). Недостатком получаемого гемосорбента является его низкая прочность и поверхностная неоднородность.

Все вышеописанные сорбенты обладают неспецифичностью и низкой адсорбционной способностью к веществам белковой природы. Для того чтобы обеспечить биоспецифическое взаимодействие биологических молекул и увеличить емкость аффинного сорбента, необходимо перевести имеющиеся на полимерной пленке функциональные группы в реакционноспособные и иммобилизовать на активированной поверхности биолиганд, способный к эффективному связыванию определенных токсичных веществ белковой природы. Необходимым условием является ковалентное его присоединение к модифицированной поверхности сорбента.

Известен способ получения биоспецифического углеродного сорбента, в котором в качестве исходного углеродного сорбента используется гемосорбент марки «СУМС-1». Иммобилизацию биолигандов (противоэнцефалитного гамма-глобулина, белка А, нейтральной протеазы Протосубтилина П10Х) осуществляли простой циркуляцией изотоничсекого раствора белка через слой гемосорбента в динамических условиях (Коваленко Г.А. Методы получения биоспецифических гемосорбентов. // Химико-фармацевтический журнал, 1998, 3. С.36-40). Недостатками полученных при таком способе иммобилизации сорбентов является низкая концентрация биолиганда на поверхности сорбента; уменьшение ферментативной активности используемых белков после иммобилизации; использование полученных сорбентов при заболеваниях, сопровождающихся накоплением только определенных соединений белковой природы с известным строением и высокой молекулярной массой.

Наиболее близким к предлагаемому способу является способ обработки углеродного мезопористого гемосорбента, включающий обработку пористого углеродного материала воздухом при контактировании с воздушно-водяной смесью в кипящем слое и обработку гемосорбента в стационарном слое 4-6% раствором азотной кислоты, подаваемым в зону реакции порциями через определеннее интервалы времени, с последующей подачей воздуха с объемной скоростью 8 м 3 /ч для перемешивания сорбента. Обработку кислотой проводят в течение 7 часов, соотношение кислоты и сорбента составляет 1:(29-32). Полученный сорбент сушат при температуре 200°С до остаточной влажности 0,2% (патент РФ 2362733, прототип).

Наиболее близким к предлагаемому гемосорбенту является углеродный мезопористый гемосорбент ВНИИТУ-1, который состоит из гранул размером 0,5-1,0 мм, характеризуется высокой химической чистотой (содержание углерода не менее 99,5%), удельной адсорбционной поверхностью 300-400 м 3 /г, присутствием на поверхности кислородсодержащих функциональных групп в количестве 0,060-0,070 мэкв/г, из них содержание карбоксильных групп 0,051-0,058 мэкв/г, фенольных 0,009-0,022 мэкв/г (Суровикин В.Ф., Пьянова Л.Г., Лузянина Л.С. Новые гемо- и энтеросорбенты на основе нанодисперсных углерод-углеродных материалов // Российский химический журнал. 2007 - Т.LI. - 5. С.159-165).

К недостатку углеродного гемосорбента можно отнести невысокую адсорбционную емкость по отношению к токсичным соединениям белковой природы, накапливающимся в организме при определенных заболеваниях.

Целью изобретения является получение углеродного гемосорбента с высокой адсорбционной активностью, настроенного на извлечение патологических веществ белковой природы.

Предлагаемый способ модифицирования углеродного гемосорбента включает обработку водным раствором оксикислоты с концентрацией 5-20% при соотношении гемосорбент : раствор оксикислоты 1:10-1:20 при температуре 25°С в течение 2-4 ч с последующим декантированием и выдержкой пропитанного гемосорбента в инертной среде в течение 0,25-6 ч при температуре 120-350°С, кипячением в дистиллированной воде в течение 1-2 ч, сушкой и последующей пропиткой 1М растворами N,N'-дициклогексилкарбодиимида и пентафторфенола в органическом растворителе (диметиламид) при перемешивании реакционной смеси в течение 0,5-3 ч с последующем добавлением приготовленного в буферном растворе с рН 7,3-7,5 сывороточного альбумина с концентрацией 0,5-2,0 мг/мл при перемешивании в течение 16-24 ч, отмывку 0,9% раствором хлорида натрия.

Предлагаемый углеродный гемосорбент с иммобилизованным белком в виде гранул округлой формы размером 0,5-1,0 мм, с гладким рельефом поверхности, характеризуется содержанием на поверхности белка, удельной адсорбционной поверхностью 250-280 м 2 /г, общим объемом пор 0,40-0,50 см 3 /г, преимущественно мезопор 0,35-0,48 см 3 /г, концентрацией кислородсодержащих групп на поверхности гранул 0,20-0,40 мэкв/г и содержанием общего азота 3-5%.

Отличительными признаками данного изобретения являются:

- модифицирование поверхности углеродного гемосорбента нетоксичной оксикислотой, содержащей в своем составе не менее двух функциональных групп: карбоксильную -СООН и гидроксильную -ОН;

- активация модифицированного гемосорбента путем обработки растворами N,N'-дициклогексилкарбодиимида и пентафторфенола в органическом растворителе (диметиламид кислот);

- иммобилизация сывороточного альбумина на поверхности гемосорбента.

Повышение адсорбционной емкости достигается за счет нанесения на гидрофобную пористую поверхность углеродного сорбента нетоксичной органической оксикислоты, содержащей в своем составе не менее двух функциональных групп (карбоксильная -СООН и гидроксильная -ОН). Бифункциональность модифицирующего соединения создает условия для протекания реакции гомополиконденсации с образованием олигомерных или полимерных молекул, обладающих низкой растворимостью в воде. Протекающие межмакромолекулярные реакции на твердой поверхности сорбента при полимеризации позволяют изменять состояние модифицирующего соединения при полимеризации (олиго- и полимеров), переводя их из состояния изолированных макромолекул в состояние единой пространственной сетчатой структуры с принципиально новыми свойствами: происходит резкое снижение необратимых деформаций, потери текучести, растворимости, улучшение прочностных свойств. Данное обстоятельство обеспечивает постоянство химического состава образованного полимера на поверхности модифицированного сорбента в процессе работы при контактах с биологическими жидкостями. Наличие карбоксильной группы в данном случае выступает как собственный кислотный катализатор, обеспечивая процесс самокатализируемой поликонденсации.

Присутствие закрепленных на углеродной поверхности концевых функциональных групп молекулы оксикислот -СООН повышает гидрофильность поверхности гемосорбента и соответственно увеличивает сорбционную активность к белковым соединениям.

Активация карбоксильных групп (придание повышенной реакционоспособности) на концах образованных полимерных цепей на поверхности углеродного сорбента позволяет увеличить количество активных центров, ковалентно связанных с иммобилизованным белком - биолигандом. Используемый в качестве биолиганда белок сывороточный альбумин обеспечивает селективные (аффинные) свойства получаемого сорбента по отношению к соединениям белковой природы. Уникальность выбранного биолиганда обусловлена его физико-химическими и физиологическими свойствами, наличием в его структуре большого количества реакционоспособных центров, способных связываться с токсинами белковой природы и инактивировать их (детоксикационные свойства).

Модифицирование углеродной поверхности приводит к изменениям параметров пористой текстуры углеродного гемосорбента: полностью закрываются микропоры, снижается объем макропор. В целом пористая структура модифицированных образцов гемосорбента характеризуется меньшими значениями величины удельной адсорбционной поверхности S БЭТ и более высокими значениями среднего диаметра пор.

Проведение модифицирования полимерами оксикислот и последующая активация поверхностных карбоксильных групп углеродного гемосорбента приводит к значительному увеличению кислородсодержащих групп, образующих активные адсорбционные центры, способные адсорбировать белковые соединения за счет их специфического взаимодействия с функциональными поверхностными группами модифицированного сорбента. Количество кислородсодержащих групп на поверхности модифицированных углеродных сорбентов после их активации возрастает в 4 раза: содержание общих кислых групп для модифицированных сорбентов после активации на поверхности увеличивается от 0,060-0,070 до 0,20-0,40 мэкв/г.

Увеличение концентрации кислородсодержащих групп, в том числе карбоксильных групп, на поверхности гемосорбента вносит определенный вклад в адсорбцию белковых веществ. После проведения активации карбоксильных групп на поверхности углеродного сорбента с прочно закрепленной полимерной пленкой ковалентно присоединяется белок-лиганд.

Определение физико-химических характеристик образцов исходного и модифицированного углеродного гемосорбента проводилось стандартными методами, применяемыми при исследовании пористых материалов: количественное содержание кислородсодержащих групп - химическим методом (метод Boehm Н.Р.) по взаимодействию с химическими реагентами различной природы и потенциометрическим титрованием. Основные текстурные характеристики - удельную адсорбционную поверхность, суммарный объем пор и распределение пор по размерам - определяли по изотермам адсорбции-десорбции азота, полученным на приборе «Sorptomatic-1900» фирмы «Carlo Erba». Расчет величины адсорбционной удельной поверхности проводили по уравнению БЭТ. Рельеф и морфологию поверхности исследуемых образцов углеродного сорбента изучали методом растровой электронной микроскопии с использованием электронного микроскопа «JSM-6460 LV» («JEOL», Япония). Снимки просвечивающей электронной микроскопии высокого разрешения (ПЭМВР) получали на электронном микроскопе «JEM-2010» («JEOL», Япония) с разрешением по решетке 0.14 нм при ускоряющем напряжении 200 кВ. Рентгеновский микроанализ поверхности исследуемых образцов проводили на энергодисперсионном спектрометре EDAX («EDAX», Япония), оснащенном Si (Li) детектором с энергетическим разрешением 130 эВ. Исследование поверхности образцов углерод-углеродного сорбента проводили методом атомно-силовой микроскопии на микроскопе «Solver Р47» («NT-MDT», Россия) в полуконтактном режиме.

Влияние модифицирования поверхности углеродного гемосорбента на адсорбционные свойства по отношению к малым М-белкам (белковая фракция «Глобулин -1») исследовано в Центральной научно-исследовательской лаборатории Омской государственной медицинской академии на плазме крови больных микс-гепатитами (стендовые испытания). Определение сорбции малых М-белков проводили методом капиллярного белкового электрофореза.

На фиг.1 приведены электронно-микроскопические (ПЭМВР) снимки образца, модифицированного полимером молочной кислоты, с активированными карбоксильными группами и иммобилизованным сывороточным альбумином (частицы с размерами ~10 нм), закрепленные на поверхности глобул сорбента.

На фиг.2 приведен спектр рентгеновского энергодисперсионного микроанализа поверхности образца модифицированного гемосорбента с иммобилизированным на его поверхности сывороточным альбумином. Анализ полученных спектров показал наличие спектральной линии азота, входящего в структуру молекулы белка сывороточного альбумина (модификатор - молочная кислота не имеет элемента азота в своей структуре).

Для исследования структуры поверхности и определения сил межмолекулярного взаимодействия был использован метод атомно-силовой микроскопии (АСМ). На фиг.3 - трехмерное представление образцов углеродного гемосорбента. Методом АСМ было показано, что поверхность гранул исходного сорбента имеет сложную организацию (фиг.3а). Установлено, что модифицирование сорбента молочной кислотой и его активация не оказывают влияния на топографические характеристики поверхности гранул в пределах разрешения использованного метода ( 20 нм) (фиг.3б). Изучение поверхности образца, модифицированного молочной кислотой после активации, через который пропущена плазма крови здорового человека, выявило сглаживание рельефа - заполнение каньонов и ямок, и уменьшение высоты шиловидных образований (фиг.3в). Наиболее ярко сглаживание рельефа наблюдается на образце углеродного гемосорбента, модифицированного молочной кислотой, активированного, с иммобилизованным альбумином, через который пропущена плазма крови здорового человека (фиг.3г).

На фиг.4 приведены ИК-спектры углеродных гемосорбентов: по прототипу (1), модифицированного молочной кислотой (2) и модифицированного молочной кислотой, активированного с иммобилизованным альбумином (3). Иммобилизацию альбумина на поверхности модифицированного гемосорбента подтверждает наличие связи -NH(CO)-, характерное для белков, которое проявляется в области 1500-1700 см -1 в виде двух полос поглощения 1500-1600 см -1 и 1600-1700 см -1 с максимумом при 1659 см -1 (Шиманучи Т. Новые аспекты колебательной спектроскопии полимеров. В кн.: Структурные исследования макромолекул спектроскопическими методами. М: Химия, 1980. С.60-72).

Эффективность способа модифицирования поверхности углеродного гемосорбента полимерами оксикислот с последующей иммобилизацией сывороточного альбумина для избирательной сорбции патологических веществ белковой природы доказывают примеры сорбции малых М-белков (мембранные белки, молекулярная масса 30000-70000 г/моль) из плазмы крови больных гепатитами полученными сорбентами (см. таблицу). Сорбционные свойства повышаются по сравнению с прототипом в отношении к извлекаемым токсичным белкам: снижение концентрации токсичных белков для прототипа до 13,6%, для модифицированных образцов - до 8,7%.

Для иллюстрации изобретения приведены следующие примеры.

Пример 1 (по прототипу).

Навеску гемосорбента 0,05 г заливают плазмой крови больного микс-гепатитом с содержанием малых М-белков в белковой фракции «Глобулин -1» 19,3% и перемешивают на шейкере в течение часа при комнатной температуре. Концентрацию белков во фракции до и после контакта с гемосорбентом определяют методом капиллярного белкового электрофореза и далее расчетным путем. Количество белков в исследуемой фракции после контакта с гемосорбентом составило 18,2%.

Пример 2.

Навеску гемосорбента 0,05 г пропитывают 18% раствором молочной кислоты при соотношении гемосорбент : раствор кислоты=1:10 при температуре 25°С в течение 3 ч, затем гемосорбент отделяют фильтрованием, высушивают при температуре 105°С до постоянного веса, выдерживают в инертной среде при температуре 200°С в течение 2 ч, кипятят в дистиллированной воде в течение 1 ч, после чего гемосорбент высушивают при комнатной температуре в течение 10 ч.

Затем проводят активацию обработкой 1М растворами N,N'-дициклогексилкарбодиимида и пентафторфенола в диметилформамиде при соотношении объем раствора : сорбент=5:1 при перемешивании реакционной смеси в течение 2 ч с последующей отмывкой диметилформамидом, затем водой и проводят адсорбцию белков плазмы крови больного микс-гепатитом по примеру 1.

Количество белков в исследуемой фракции после контакта с гемосорбентом составило 13,6%.

Пример 3.

Модифицирование гемосорбента проводят по примеру 2, затем добавляют 1 мл приготовленного в буферном растворе с рН 7,4 сывороточного альбумина с концентрацией 1,0 мг/мл при перемешивании в течение 24 ч с последующей отмывкой 0,9% раствором хлорида натрия и проводят адсорбцию белков плазмы крови больного микс-гепатитом по примеру 1. Количество белков в исследуемой фракции после контакта с гемосорбентом составило 12,5%.

Пример 4.

Модифицирование и активацию гемосорбента проводят по примеру 2, но сразу после отмывки диметилформамидом добавляют сывороточный альбумин по примеру 3 и проводят адсорбцию белков плазмы крови больного микс-гепатитом по примеру 1.

Количество белков в исследуемой фракции после контакта с гемосорбентом составило 8,7%.

Как следует из приведенных примеров, модифицирование поверхности углеродного гемосорбента растворами оксикислот на примере молочной кислоты с последующей активацией и иммобилизацией белка приводит к снижению его удельной адсорбционной поверхности S БЭТ от 400 м 2 /г до 274 м 2 /г и сохранению мезопористой структуры. Важную роль в процессе модифицирования для образования ковалентной связи с иммобилизованным белком играет увеличение количества карбоксильных групп на поверхности гемосорбента при активации. Заявленный способ модифицирования позволяет избирательно сорбировать токсичные белки при микс-гепатитах.

Как следует из таблицы, модифицирование поверхности углеродного гемосорбента полимером оксикислоты с последующей активацией карбоксильных групп и иммобилизацией сывороточного альбумина позволяет повысить его адсорбционную активность по отношению к токсичным белковым молекулам определенной природы и молекулярной массы. Повышенная активность модифицированного образца по отношению к малым М-белкам подтверждена стендовыми медицинскими испытаниями на плазме крови больных микс-гепатитами.

Таким образом, сорбционная способность образцов углеродного гемосорбента, модифицированного молочной кислотой, активированного с иммобилизованным альбумином, через который пропущена плазма крови больного человека микс-гепатитом, значительно превосходит адсорбционную способность исходного углеродного гемосорбента.

Текстурные характеристики

Концентрация кислородсодержащих групп, мэкв/г

Содержание малых М-белков в плазме крови больных гепатитом, %

Образец

Объем пор, см 3 /г

Суммарное количество групп

карбоксильных

фенольных

Содержание азота, %

До контакта геммосорбентом

После контакта с гемосорбентом

суммарный

микропор

мезопор

Макропор

S БЭТ , м 2 /г

Пример 1. По прототипу

0,959

0,022

0,858

0,079

400

0,065

0,054

0,011

-

19,3

18,2

Пример 2. Углеродный гемосорбент, модифицированный молочной кислотой с последующей активацией

0,483

-

0,467

0,016

261

0,257

0,184

0,073

-

19,3

13,6

Пример 3.Углеродный гемосорбент, модифицированный молочной кислотой, с иммобилизованным белком

0,465

-

0,447

0,018

177

0,220

0,220

-

3,8

19,3

12,5

Пример 4. Углеродный гемосорбент, модифицированный молочной кислотой, с последующей активацией, с иммобилизованным белком

0,479

-

0,466

0,013

274

0,200

0,137

0,063

4,0

19,3

8,7

Формула изобретения

1. Способ модифицирования углеродного гемосорбента, включающий обработку водным раствором кислоты и высушивание продукта, отличающийся тем, что обработку проводят оксикислотой с концентрацией 5-20% при соотношении гемосорбент : раствор оксикислоты 1:10-1:20 в течение 2-4 ч, с выдержкой в инертной среде в течение 0,25-6 ч при температуре 120-350°С, кипячением в дистиллированной воде в течение 1-2 ч и сушкой, а затем 1М растворами N,N'-дициклогексилкарбодиимида и пентафторфенола в диметиламиде при перемешивании реакционной смеси в течение 0,5-3 ч, с последующим добавлением приготовленного в буферном растворе с рН 7,3-7,5 сывороточного альбумина с концентрацией 0,5-2,0 мг/мл при перемешивании в течение 16-24 ч с отмывкой 0,9%-ным раствором хлорида натрия.

2. Углеродный гемосорбент с иммобилизованным белком в виде гранул округлой формы размером 0,5-1,0 мм, с гладким рельефом поверхности, отличающийся тем, что получен способом по п.1, содержит на поверхности белок и характеризуется удельной адсорбционной поверхностью 250-280 м 2 /г, общим объемом пор 0,40-0,50 см 3 /г, преимущественно мезопор 0,35-0,48 см 3 /г, концентрацией кислородсодержащих групп на поверхности гранул 0,20-0,40 мэкв/г и содержанием общего азота 3-5%.

РИСУНКИ