Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2454443

(19)

RU

(11)

2454443

(13)

C2

(51) МПК C08L23/04 (2006.01)

C08F10/02 (2006.01)

C08F297/08 (2006.01)

C08K5/04 (2006.01)

C08K5/053 (2006.01)

C08F2/18 (2006.01)

F16L9/12 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 27.08.2012 - действует Пошлина: учтена за 5 год с 20.10.2011 по 19.10.2012

(21), (22) Заявка: 2009119433/04, 19.10.2007

(24) Дата начала отсчета срока действия патента:

19.10.2007

Приоритет(ы):

(30) Конвенционный приоритет:

24.10.2006 EP 06022205.6

(43) Дата публикации заявки: 27.11.2010

(45) Опубликовано: 27.06.2012

(56) Список документов, цитированных в отчете о

поиске: WO 02/26880 А, 04.04.2002. ЕР 1574549 А1, 14.09.2005. US 2002/0156214 A1, 24.10.2002. ЕР 0739937 А2, 30.10.1996. ЕР 1731565 А1, 13.12.2006. WO 2007/045415 А, 26.04.2007. WO 2006/053741 А1, 26.05.2006. ЕА 003428 В1, 24.04.2003. RU 2005123325 А, 20.01.2006.

(85) Дата начала рассмотрения заявки PCT на национальной фазе: 25.05.2009

(86) Заявка PCT:

EP 2007/009090 20071019

(87) Публикация заявки PCT:

WO 2008/049551 20080502

Адрес для переписки:

129090, Москва, ул. Б. Спасская, 25, стр.3, ООО "Юридическая фирма Городисский и Партнеры", Е.Е.Назиной

(72) Автор(ы):

БЕРТОЛЬД Йоахим (DE),

НИТЦ Хансйорг (DE),

РОТХЁФТ Вернер (DE),

ШУЛЬТЕ Ульрих (DE),

ФОГТ Хайнц (DE)

(73) Патентообладатель(и):

БАЗЕЛЛЬ ПОЛИОЛЕФИНЕ ГМБХ (DE)

(54) МУЛЬТИМОДАЛЬНАЯ ПОЛИЭТИЛЕНОВАЯ ФОРМОВОЧНАЯ КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ТРУБ, ОБЛАДАЮЩИХ УЛУЧШЕННЫМИ МЕХАНИЧЕСКИМИ СВОЙСТВАМИ

(57) Реферат:

Изобретение относится к полиэтиленовой формовочной композиции, имеющей мультимодальное молекулярно-массовое распределение для изготовления труб. Композиция содержит, мас.%: первый низкомолекулярный этиленовый гомополимер А 45-55; второй высокомолекулярный сополимер В 20-40, содержащий этилен и еще один олефин с 4-8 атомами углерода; третий этиленовый сополимер С 15-30. Дополнительно содержит органическое полиоксисоединение в количестве 0,01-0,5 мас.%. Композицию получают в присутствии катализатора Циглера по трехстадийному способу полимеризации в суспензии. Технический результат - создание формовочной композиции на основе полиэтилена, характеризующейся улучшенной технологичностью без возникновения потеков. 3 н. и 6 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к полиэтиленовой формовочной композиции, имеющей мультимодальное молекулярно-массовое распределение и являющейся особенно подходящей для использования при изготовлении труб, имеющих увеличенные диаметр и толщину стенки. Изобретение также относится к способу получения данной формовочной композиции в присутствии каталитической системы, содержащей катализатор Циглера и сокатализатор, при использовании многостадийной последовательности реакций, включающей последовательные стадии полимеризации.

Выражения «полиэтиленовая формовочная композиция, имеющая мультимодальное молекулярно-массовое распределение» или просто «мультимодальный полиэтилен» означают полиэтиленовую формовочную композицию или полиэтилен, характеризующиеся кривой молекулярно-массового распределения, имеющей мультимодальную конфигурацию, то есть полиэтилен, содержащий множество этиленовых полимерных фракций, при этом каждая из них имеет отличную или другую молекулярную массу в сопоставлении с остальными фракциями. Например, в соответствии с предпочтительным вариантом реализации настоящего изобретения мультимодальный полиэтилен может быть получен при использовании многостадийной последовательности реакций, включающей последовательные стадии полимеризации, проводимые в предварительно заданных различных условиях проведения реакции в соответствующих скомпонованных последовательно реакторах, что приводит к получению соответствующих полиэтиленовых фракций, имеющих различные молекулярные массы. Способ данного типа может быть реализован в суспензионной среде: в данном случае сначала мономеры и регулятор молярной массы, предпочтительно водород, подвергают полимеризации в первом реакторе в условиях проведения первой реакции в присутствии суспензионной среды и подходящего для использования катализатора, предпочтительно катализатора Циглера, после этого переводят во второй реактор и дополнительно подвергают полимеризации в условиях проведения второй реакции, а, например, в случае тримодальности получаемого полиэтилена дополнительно переводят в третий реактор и дополнительно подвергают полимеризации в условиях проведения третьей реакции, при этом условия проведения первой реакции отличаются от условий проведения второй и третьей реакций, что позволяет получить три полиэтиленовые фракции, имеющие различные молекулярные массы. Данное различие молекулярной массы у различных этиленовых полимерных фракций обычно оценивают по среднемассовой молекулярной массе M w .

Несмотря на особенную пригодность катализаторов Циглера для использования в предпочтительных областях применения настоящего изобретения могут быть использованы также и другие катализаторы, например катализаторы, содержащие единый центр катализатора (или «одноцентровые» катализаторы), например металлоценовые катализаторы.

Полиэтилен в больших масштабах используют для изготовления труб, для которых требуется материал, характеризующийся высокой механической прочностью, низкой тенденцией к ползучести и высокой стойкостью к растрескиванию под действием напряжения, обусловленного влиянием факторов окружающей среды. В то же самое время материал должен обладать способностью легко подвергаться переработке при изготовлении труб, даже в случае изготовления таких труб, которые имеют увеличенный диаметр и повышенную толщину стенки.

Полиэтиленовым формовочным композициям, характеризующимся унимодальным или мономодальным молекулярно-массовым распределением, то есть содержащим одну этиленовую полимерную фракцию, имеющую предварительно заданную молекулярную массу, свойственны недостатки либо в отношении их технологичности, либо в отношении стойкости к растрескиванию под действием напряжения, обусловленного влиянием факторов окружающей среды или их механической ударопрочности.

В сопоставлении с этим формовочные композиции, характеризующиеся бимодальным молекулярно-массовым распределением, представляют собой технический шаг вперед. Они могут быть легче подвергнуты переработке и при той же самой плотности, что и у унимодальной композиции, характеризуются гораздо лучшей стойкостью к растрескиванию под действием напряжения, обусловленного влиянием факторов окружающей среды, и более высокой механической прочностью.

В документе ЕР 739937 описывается труба, содержащая такую формовочную композицию, которая в своей основе имеет полиэтилен, характеризуется бимодальным молекулярно-массовым распределением, может быть легко подвергнута переработке и, тем не менее, обладает хорошими механическими свойствами. Однако при изготовлении труб, имеющих увеличенный диаметр, больший чем 50 см, и повышенную толщину стенки, большую чем 1,5 см, зачастую встречается так называемая «проблема возникновения потеков», поскольку сразу же после экструдирования расплава полимера с приданием ему формы трубы он до своего затвердевания начинает стекать вниз под воздействием силы тяжести, что в результате приводит к возникновению значительных различий по толщине стенки трубы при проведении измерений по полной окружности трубы. К проблеме потеков более подробно обращаются также и в документе ЕР 1320570.

Задача настоящего изобретения заключается в создании формовочной композиции на основе полиэтилена, характеризующейся улучшенной технологичностью, поскольку эффект возникновения потеков не будет проявляться, в особенности в случае использования формовочной композиции в качестве материала исходного сырья для изготовления труб, имеющих увеличенный диаметр и повышенную толщину стенки. В комбинации с этим таким образом полученные трубы должны демонстрировать наличие комбинации еще более улучшенных свойств, выражаемых через стойкость к растрескиванию под действием напряжения, обусловленного влиянием факторов окружающей среды, и механическую прочность, в особенности в течение продолжительного периода времени.

Как это ни удивительно, но достижения данной задачи достигают при использовании полиэтиленовой формовочной композиции, характеризующейся мультимодальным молекулярно-массовым распределением, содержащей от 45 до 55% (мас.) первого этиленового гомополимера А, от 20 до 40% (мас.) второго сополимера В, содержащего этилен и еще один олефин, содержащий от 4 до 8 атомов углерода, и от 15 до 30% (мас.) третьего этиленового сополимера С, где все процентные содержания основаны на общей массе формовочной композиции, дополнительно содержащей в количестве от 0,01 до 0,5% (мас.), от полной массы формовочной композиции, органическое полиоксисоединение, имеющее химическую формулу:

R-[(CH 2 ) n -O] m -H

где n представляет собой целое число в диапазоне от 1 до 10,

m представляет собой целое число в диапазоне от 3 до 500, а

R представляет собой атом водорода, или группу ОН, или алкильную группу, которая содержит от 1 до 10 атомов углерода и может иметь дополнительные заместители, такие как -ОН, -СООН, -COOR, -OCH 3 , или -ОС 2 Н 5 , или органическое полигидроксисоединение, имеющее общую химическую формулу:

RO-CH 2 -C-(CH 2 -OR) 3

где R может представлять собой атом водорода или алкильную группу, которая содержит от 1 до 5 атомов углерода и может иметь дополнительных заместителей, таких как -ОН, -СООН, -COOR, -OCH 3 , или -ОС 2 Н 5 , или комбинацию двух вариантов.

Выражения «первый этиленовый гомополимер А», «второй этиленовый сополимер В» и «третий этиленовый сополимер С» означают этиленовый гомополимер А, этиленовый сополимер В и этиленовый сополимер С, соответственно, имеющие различные, предпочтительно возрастающие, молекулярные массы.

Изобретение дополнительно относится к способу получения данной формовочной композиции в рамках каскадной суспензионной полимеризации и трубам, имеющим увеличенный диаметр, равный или больший 50 см, и повышенную толщину стенки, равную или большую 1,5 см, содержащим данную формовочную композицию, обладающую совершенно превосходными механическими прочностными свойствами в сочетании с высокой жесткостью.

Полиэтиленовая формовочная композиция изобретения имеет плотность при температуре 23°С в диапазоне от 0,945 до 0,957 г/см 3 , предпочтительно от 0,945 до 0,955 г/см 3 , более предпочтительно от 0,948 до 0,955 г/см 3 и характеризуется тримодальным молекулярно-массовым распределением. Второй сополимер В содержит доли дополнительных олефиновых мономерных звеньев, содержащих от 4 до 8 атомов углерода, в количестве от 1 до 8% (мас.) от массы высокомолекулярного сополимера В. Примерами таких сомономеров являются 1-бутен, 1-пентен, 1-гексен, 1-октен и 4-метил-1-пентен. Подобным же образом третий этиленовый сополимер С включает один или несколько вышеупомянутых сомономеров в количестве от 1 до 8% (мас.) от массы сверхвысокомолекулярного этиленового сополимера С.

Данные предпочтительные количества сомономеров делают возможным достижение улучшенной стойкости к растрескиванию под действием напряжения, обусловленного влиянием факторов окружающей среды. В пределах данных предпочтительных диапазонов полиэтиленовая формовочная композиция выгодным образом демонстрирует наличие дополнительно улучшенной комбинации механических свойств.

Кроме того, формовочная композиция изобретения характеризуется индексом текучести расплава, измеренным в соответствии с документом ISO 1133 и выражаемым через значение ИТР 190/5 , в диапазоне от 0,1 до 0,8 дг/мин, в особенности от 0,1 до 0,5 дг/мин, и приведенной вязкостью VN пoлн. , измеренной в соответствии с документом ISO/R 1191 в декалине при температуре 135°С, в диапазоне от 200 до 600 см 3 /г, в особенности от 250 до 550 см 3 /г, в особенности предпочтительно от 350 до 490 см 3 /г.

Тримодальность как мера местоположения центров тяжести трех индивидуальных молярно-массовых распределений может быть описана при использовании приведенных вязкостей VN, измеренных в соответствии с документом ISO/R 1191 для полимеров, полученных на последовательных стадиях полимеризации. В данном случае внимание необходимо обратить на следующие далее ширины полос для полимеров, полученных на индивидуальных стадиях реакции:

Приведенная вязкость VN 1 , измеренная для полимера после проведения первой стадии полимеризации, идентична приведенной вязкости VN A низкомолекулярного полиэтилена А и в соответствии с изобретением находится в диапазоне от 50 до 120 см 3 /г, в особенности от 60 до 100 см 3 /г.

Приведенная вязкость VN 2 , измеренная для полимера после проведения второй стадии полимеризации, не соответствует значению VN B для относительно высокой молекулярной массы второго полиэтилена В, полученного на второй стадии полимеризации, а вместо этого представляет собой приведенную вязкость смеси полимера А плюс полимера В. В соответствии с изобретением значение VN 2 находится в диапазоне от 200 до 400 см 3 /г, в особенности от 250 до 350 см 3 /г.

Приведенная вязкость VN 3 , измеренная для полимера после проведения третьей стадии полимеризации, не соответствует значению VN C для сверхвысокой молекулярной массы третьего сополимера С, полученного на третьей стадии полимеризации, которое аналогично может быть определено только математически, а вместо этого представляет собой приведенную вязкость смеси полимера А, полимера В плюс полимера С. В соответствии с изобретением значение VN 3 находится в диапазоне от 200 до 600 см 3 /г, в особенности от 250 до 550 см 3 /г, в особенности предпочтительно от 350 до 490 см 3 /г.

В качестве дополнительно присутствующих органических полиоксисоединений, которые, как было установлено, являются в особенности хорошо подходящими для использования, были признаны полиэтиленгликоль, метоксиполиэтиленгликоль и полипропиленгликоль. Предпочтение отдается использованию полиоксисоединений, которые имеют среднюю молярную массу в диапазоне от 400 до 9000 г/моль. Предпочтительные количества, в которых используют данные полиоксисоединения, находятся в диапазоне от 0,02 до 0,4% (мас.), в особенности предпочтительно от 0,1 до 0,3% (мас.).

В качестве дополнительно присутствующих органических полигидроксисоединений, которые, как было установлено, являются в особенности хорошо подходящими для использования, были признаны пентаэритрит, триметилолпропан, глицерин, маннит и сорбит. Предпочтительные количества, в которых используют данные полигидроксисоединения, находятся в диапазоне от 0,02 до 0,4% (мас.), в особенности предпочтительно от 0,1 до 0,3% (мас.).

Полиэтилен может быть получен в результате проведения полимеризации мономеров в суспензии при температурах в диапазоне от 70 до 100°С, предпочтительно от 75 до 90°С, при давлении в диапазоне от 2 до 10 бар и в присутствии высокоактивного катализатора Циглера, который образован из соединения переходного металла и алюминийорганического соединения. Полимеризация может быть проведена в три стадии, то есть в три последовательные стадии, когда молекулярную массу на каждой стадии регулируют при использовании регулятора молярной массы, предпочтительно, пользуясь присутствием водорода.

В частности, способ полимеризации предпочтительно реализуют при установлении наивысшей концентрации водорода в первом реакторе. В последующих дополнительных реакторах концентрацию водорода предпочтительно несколько уменьшают, так чтобы концентрация водорода, использующегося в третьем реакторе, была бы меньшей, чем концентрация водорода, использующегося во втором реакторе. Предпочтительно во втором реакторе и в третьем реакторе используют предварительно заданную концентрацию сомономера, предпочтительно возрастающую при переходе от второго реактора к третьему реактору. Как утверждалось ранее, на тех стадиях, на которых получают сополимерную фракцию, предпочтительно во втором реакторе и в третьем реакторе в качестве мономера, таким образом, используют этилен, а в качестве сомономера предпочтительно используют олефин, содержащий от 4 до 8 атомов углерода.

Молекулярно-массовое распределение полиэтиленовой формовочной композиции настоящего изобретения предпочтительно является тримодальным. Таким образом, вышеупомянутая выгодная комбинация свойств может быть получена без избыточного усложнения способа получения в результате обеспечения наличия трех соединенных последовательно реакторов и, тем самым, выгодного сохранения размеров установки в так или иначе ограниченных пределах. Таким образом, для получения тримодальной полиэтиленовой формовочной композиции полимеризацию этилена предпочтительно проводят по непрерывному способу, реализуемому в трех соединенных последовательно реакторах, где в трех реакторах устанавливают соответствующим образом различающиеся условия проведения реакции. Предпочтительно полимеризацию проводят в суспензии: в первый реактор предпочтительно подают подходящий для использования катализатор, например катализатор Циглера, совместно с суспензионной средой, сокатализатором, этиленом и водородом.

Предпочтительно никакого сомономера в первый реактор не вводят. После этого суспензию из первого реактора переводят во второй реактор, в который добавляют этилен, водород и предпочтительно также и некоторое предварительно заданное количество сомономера, например 1-бутена. В сопоставлении с количеством водорода, подаваемого в первый реактор, количество водорода, подаваемого во второй реактор, предпочтительно уменьшают. Суспензию из второго реактора переводят в третий реактор. В третий реактор вводят этилен, водород и, предпочтительно, предварительно заданное количество сомономера, например, 1-бутена, предпочтительно количество большее, чем количество сомономера, использующегося во втором реакторе. В сопоставлении с количеством водорода во втором реакторе количество водорода в третьем реакторе уменьшают. От суспензии полимера, покидающей третий реактор, отделяют суспензионную среду, и получающийся в результате порошкообразный полимер перемешивают с желательным количеством дополнительного органического полиоксисоединения или органического полигидроксисоединения или дополнительного ненасыщенного алифатического углеводородного соединения, после этого высушивают, а затем предпочтительно гранулируют.

Предпочтительная тримодальность, то есть предпочтительная тримодальная конфигурация кривой молекулярно-массового распределения, может быть описана через местоположения центров тяжести трех индивидуальных молекулярно-массовых распределений при использовании приведенных вязкостей VN, измеренных в соответствии с документом ISO/R 1191 для полимеров, полученных после проведения каждой из стадий полимеризации.

Первый гомополимер А предпочтительно получают на первой стадии полимеризации в виде низкомолекулярного этиленового гомополимера А: в данном предпочтительном варианте реализации приведенная вязкость VN 1 , измеренная для полимера, полученного после проведения первой стадии полимеризации, представляет собой приведенную вязкость низкомолекулярного этиленового гомополимера А и предпочтительно находится в диапазоне от 50 до 150 см 3 /г, более предпочтительно от 60 до 120 см 3 /г, в особенности от 65 до 100 см 3 /г.

В соответствии с альтернативными вариантами реализации на первой стадии полимеризации могут быть получены либо второй высокомолекулярный этиленовый сополимер В, либо третий сверхвысокомолекулярный сополимер С.

Второй сополимер В на второй стадии полимеризации предпочтительно получают в виде высокомолекулярного этиленового сополимера.

В соответствии с особенно предпочтительным вариантом реализации, в котором на первой стадии полимеризации получают низкомолекулярный этиленовый гомополимер А, а на второй стадии полимеризации получают высокомолекулярный этиленовый сополимер В, приведенная вязкость VN 2 , измеренная для полимера, полученного после проведения второй стадии полимеризации, представляет собой приведенную вязкость смеси низкомолекулярного этиленового гомополимера А и высокомолекулярного этиленового сополимера В. Значение VN 2 предпочтительно находится в диапазоне от 70 до 180 см 3 /г, более предпочтительно от 90 до 170 см 3 /г, в особенности от 100 до 160 см 3 /г.

В данном предпочтительном варианте реализации, исходя из данных измеренных значений VN 1 и VN 2 , приведенная вязкость VN B высокомолекулярного этиленового сополимера В может быть, например, рассчитана по следующей далее эмпирической формуле:

где w 1 представляет собой массовую долю низкомолекулярного этиленового гомополимера, полученного на первой стадии полимеризации, измеренную в % (мас.) в расчете на полную массу полиэтилена, характеризующегося бимодальным молекулярно-массовым распределением и полученным на первых двух стадиях.

Третий сополимер С на третьей стадии полимеризации предпочтительно получают в виде сверхвысокомолекулярного этиленового сополимера: в данном предпочтительном варианте реализации, а также в альтернативных вариантах реализации, на которых предусматривается другой порядок проведения полимеризации, приведенная вязкость VN 3 , измеренная для полимера, полученного после проведения третьей стадии полимеризации, представляет собой приведенную вязкость смеси первого низкомолекулярного этиленового гомополимера А, второго высокомолекулярного этиленового сополимера В и третьего сверхвысокомолекулярного этиленового сополимера С. Значение VN 3 предпочтительно находится в предпочтительных диапазонах, уже определенных ранее, то есть от 150 до 300 см 3 /г, предпочтительно от 150 до 280 см 3 /г, более предпочтительно в диапазоне от 180 до 260 см 3 /г, в особенности в диапазоне от 180 до 240 см 3 /г.

В данном предпочтительном варианте реализации, исходя из данных измеренных значений VN 2 и VN 3 , приведенная вязкость VN C сверхвысокомолекулярного сополимера С, полученного на третьей стадии полимеризации, может быть, например, рассчитана по следующей далее эмпирической формуле:

где w 2 представляет собой массовую долю полиэтилена, характеризующегося бимодальным молекулярно-массовым распределением и полученного на первых двух стадиях, измеренную в % (мас.) в расчете на полную массу полиэтилена, характеризующегося тримодальным молекулярно-массовым распределением и полученным на всех трех стадиях.

Несмотря на представление способа вычисления приведенных вязкостей каждой этиленовой полимерной фракции полиэтиленовой формовочной композиции при обращении к предпочтительному случаю, в котором низкомолекулярный этиленовый гомополимер А, высокомолекулярный сополимер В и, соответственно, сверхвысокомолекулярный сополимер С получают в данном порядке, данный способ вычисления может быть использован также и для других порядков проведения полимеризации. В любом случае фактически независимо от порядка получения трех этиленовых полимерных фракций, приведенная вязкость первой этиленовой полимерной фракции равна приведенной вязкости VN 1 , измеренной для этиленового полимера, полученного после проведения первой стадии полимеризации, приведенная вязкость второй этиленовой полимерной фракции может быть рассчитана исходя из массовой доли w 1 первой этиленовой полимерной фракции, полученной на первой стадии полимеризации, измеренной в % (мас.) при расчете на полную массу полиэтилена, характеризующегося бимодальным молекулярно-массовым распределением и полученного на первых двух стадиях, и из приведенных вязкостей VN 1 и VN 2 , измеренных для полимеров, полученных после проведения второй и, соответственно, третьей стадии полимеризации, в то время как приведенная вязкость третьей этиленовой полимерной фракции может быть рассчитана исходя из массовой доли w 2 полиэтилена, характеризующегося бимодальным молекулярно-массовым распределением и полученного на первых двух стадиях, измеренной в % (мас.) при расчете на полную массу полиэтилена, характеризующегося тримодальным молекулярно-массовым распределением и полученного на всех трех стадиях, и из приведенных вязкостей VN 2 и VN 3 , измеренных для полимеров, полученных после проведения второй и, соответственно, третьей стадии полимеризации.

В дополнение к полиэтилену полиэтиленовая формовочная композиция изобретения может дополнительно содержать дополнительные добавки. Такими добавками, например, являются термостабилизаторы, антиоксиданты, УФ-поглотители, светостабилизаторы, дезактиваторы металлов, соединения, разрушающие пероксид, основные вспомогательные стабилизаторы в количествах в диапазоне от 0 до 10% (масс.), предпочтительно от 0 до 5% (мас.), но также и технический углерод, наполнители, пигменты, антипирены или их комбинации при полных количествах в диапазоне от 0 до 50% (мас.), при расчете на полную массу смеси.

В качестве термостабилизаторов формовочная композиция изобретения может содержать фенольные антиоксиданты, в особенности пентаэритритил(3,5-ди-трет-бутил-4-гидроксифенил)пропионат, который может быть получен под торговым наименованием IRGANOX в компании Ciba Specialities, Германия.

Формовочная композиция изобретения является в особенности хорошо походящей для использования при изготовлении труб, имеющих увеличенный диаметр, больший чем 50 см, предпочтительно больший чем 70 см, и повышенную толщину стенки, большую чем 1,5 см, предпочтительно большую чем 2 см.

Формовочная композиция изобретения может быть в особенности хорошо переработана при использовании способа экструдирования до получения труб и характеризуется ударной вязкостью, определенной для образца с надрезом, (ISO) в диапазоне от 8 до 14 кДж/м 2 и стойкостью к растрескиванию под действием напряжения, обусловленного влиянием факторов окружающей среды, (СРНОС) >500 часов.

Ударную вязкость, определенную для образца с надрезом, ISO измеряют в соответствии с документом ISO 179-1/1eA/DIN 53453 при -30°С. Размеры образца представляют собой 10×4×80 мм, при этом на образце формируют V-образный надрез, имеющий угол 45°, глубину 2 мм и радиус в основании надреза 0,25 мм.

Стойкость к растрескиванию под действием напряжения, обусловленного влиянием факторов окружающей среды, (СРНОС) для формовочной композиции изобретения определяют по внутреннему методу измерения и приводят в часах. Данный лабораторный метод описывается в работе M. Fleißner, Kunststoffe 77 (1987), p. 45 ff и соответствует документу ISO/CD 16770, который с тех пор вступил в силу. Данная публикация демонстрирует связь между определением медленного распространения трещины в испытании на ползучесть у образцов для испытаний с надрезом, сформированным по окружности, и определением хрупкого разветвления трещины в испытании на долговременное воздействие давления в соответствии с документом ISO 1167. Сокращение времени, проходящего до разрушения, достигается в результате сокращения времени инициирования трещины при использовании надреза (1,6 мм/лезвие бритвы) в водном растворе Arkopal с концентрацией 2% в качестве среды, способствующей растрескиванию под действием напряжения, обусловленного влиянием факторов окружающей среды, при температуре 80°С и растягивающем напряжении 4 МПа. Образцы изготавливают в результате выпиливания трех образцов для испытаний, имеющих размеры 10×10×90 мм, из прессованной пластины, имеющей толщину 10 мм. Образцы для испытаний посередине надрезают по окружности при использовании лезвия бритвы в аппарате для надрезания, изготовленного своими силами для этой цели (смотрите фиг.5 в публикации). Глубина надреза составляет 16 мм.

Пример 1

Полимеризацию этилена проводили по непрерывному способу в трех соединенных последовательно реакторах. Катализатор Циглера, который получали по способу из документа WO 91/18934, примера 2 и в документе WO характеризуется рабочим номером 2.2, вводили в первый реактор в количестве 15,6 ммоль/час совместно с достаточным количеством суспензионной среды (гексан), триэтилалюминием в качестве сокатализатора в количестве 240 ммоль/час, этиленом и водородом. Количество этилена (=68,9 кг/час) и количество водорода (=62 г/час) устанавливали таким образом, чтобы в газовом объеме первого реактора согласно измерению имели бы место уровень содержания этилена 24% (об.) и уровень содержания водорода 66,5% (об.); остальное представляло собой смесь азота и испарившейся суспензионной среды.

Полимеризацию в первом реакторе проводили при температуре 84°С.

После этого суспензию из первого реактора переводили во второй реактор, в котором уровень содержания водорода в газовом объеме уменьшали до 0,7% (об.) и в который подавали этилен в количестве 43,2 кг/час совместно с 1-бутеном в количестве 1470 г/час. Уменьшения количества водорода добивались при использовании промежуточного стравливания давления Н 2 . В газовом объеме второго реактора согласно измерению присутствовали 73,5% (об.) этилена, 0,7% (об.) водорода и 4,8% (об.) 1-бутена; остальное представляло собой смесь азота и испарившейся суспензионной среды.

Полимеризацию во втором реакторе проводили при температуре 85°С.

Суспензию из второго реактора переводили в третий реактор при дополнительном промежуточном стравливании давления Н 2 , в результате чего количество водорода в газовом объеме третьего реактора доводили до 0% (об.).

В третий реактор подавали этилен в количестве 24,3 кг/час совместно с 1-бутеном в количестве 475 г/час. В газовом объеме третьего реактора согласно измерению имели место уровень содержания этилена 72% (об.), уровень содержания водорода 0% (об.) и уровень содержания 1-бутена 5,3% (об.); остальное представляло собой смесь азота и испарившейся суспензионной среды.

Полимеризацию в третьем реакторе проводили при температуре 84°С.

Достижения долговременной активности катализатора полимеризации, требуемой для описанного ранее каскадного режима эксплуатации, добивались при использовании специально разработанного катализатора Циглера, имеющего состав, указанный в документе WO, упомянутом вначале. Мерой применимости данного катализатора являются его чрезвычайно высокая чувствительность к водороду и его высокая активность, которая остается постоянной в течение длительного периода времени продолжительностью от 1 до 8 часов.

От суспензии полимера, покидающей третий реактор, суспензионную среду отделяли, порошок перемешивали с полиэтиленгликолем, имеющим молярную массу 400 г/моль, в количестве 0,2% (мас.), после этого смесь высушивали, а порошок перепускали на гранулирование.

Приведенные вязкости и доли w A , w B и w C для полимеров А, В и С полиэтиленовой формовочной композиции, полученной так, как это описывается в примере 1, приведены в представленной далее таблице 1.

Таблица 1

Пример

1

W A (% (мас.))

50

W B (% (мас.))

32

W C (% (мас.))

18

VN 1 (см 3 /г)

80

VN 2 (см 3 /г)

305

VN полн. (см 3 /г)

450

ИППН (час)

3100

MFR (г/10 мин)

0,32

Плотность (г/см 3 )

0,947

Испытание на ползучесть при растяжении (5 МПа/23°С), относительное удлинение в (%)

1,72

AZN (кДж/м 2 )

13,7

Сокращения для обозначения физических свойств в таблицах 1 и 2 имеют следующие значения:

- ИППН = стойкость к растрескиванию под действием напряжения, обусловленного влиянием факторов окружающей среды (испытание на ползучесть с полным надрезом), измеренная в (час) по внутреннему методу измерения, описанному у автора M. Fleißner, условия: 80°С, 2,5 МПа, вода/2% Arkopal.

- AZN = ударная вязкость, определенная для образца с надрезом, ISO , измеренная в соответствии с документом ISO 179-1/1eA/DIN 53453 при -30°С, приведенная в единицах кДж/м 2 .

- Испытание на ползучесть при растяжении в соответствии с документом DIN EN ISO 899 при 23°С и растягивающем напряжении 5 МПа; приведенное число представляет собой относительное удлинение в % по истечении 96 часов.

На установке для экструдирования труб от компании Battenfeld при производительности, представленной в следующей далее таблице 2, и температуре расплава, также представленной в следующей далее таблице 2, из гранулированного материала изготавливали трубу, имеющую размеры 60×8 см. Трубы, изготовленные по данному способу, имели абсолютно гладкие поверхности, в то время как их другие свойства описываются в следующей далее таблице 2.

Таблица 2

Показатели

Единица измерения

Сравнительный пример без использования ПЭГ

Композиция, содержащая 0,2% ПЭГ

Производительность

кг/час

400

400

Температура массы

°С

200

195

Давление

бар

197

222

Скорость технологической линии

м/мин

0,053

0,053

Наружный диаметр трубы

мм

561

561

Толщина стенки сверху

мм

72

74

Толщина стенки снизу

мм

125

89

Как продемонстрировано в таблице 2, труба, полученная из композиции, соответствующей настоящему изобретению и содержащей всего лишь 0,2% (мас.) ПЭГ, в значительно меньшей степени подвержена возникновению потеков в сопоставлении с трубой, изготовленной из той же самой тримодальной композиции ПЭ, не содержащей какого-либо ПЭГ.

Формула изобретения

1. Полиэтиленовая формовочная композиция, имеющая мультимодальное молекулярно-массовое распределение, для изготовления труб, которая содержит от 45 до 55 мас.% первого этиленового гомополимера А, от 20 до 40 мас.% второго сополимера В, содержащего этилен и еще один олефин, имеющий от 4 до 8 атомов углерода, и от 15 до 30 мас.% третьего этиленового сополимера С, где все процентные содержания основаны на общей массе формовочной композиции, и дополнительно содержит в количестве от 0,01 до 0,5 мас.% от полной массы формовочной композиции, органическое полиоксисоединение, имеющее общую химическую формулу:

R-[(CH 2 ) n -O] m -H,

где n представляет собой целое число в диапазоне от 1 до 10,

m представляет собой целое число в диапазоне от 3 до 500, а

R представляет собой атом водорода, или группу ОН, или алкильную группу, которая содержит от 1 до 10 атомов углерода и может иметь дополнительные заместители, такие как -ОН, -СООН, -COOR, -ОСН 3 или -ОС 2 Н 5 .

2. Полиэтиленовая формовочная композиция по п.1, которая имеет плотность при температуре 23°С в диапазоне от 0,945 до 0,957 г/см 3 .

3. Полиэтиленовая формовочная композиция по п.1 или 2, где второй сополимер В содержит дополнительные олефиновые мономерные звенья, содержащие от 4 до 8 атомов углерода, в количестве в диапазоне от 1 до 8 мас.% от массы второго сополимера В.

4. Полиэтиленовая формовочная композиция по п.1 или 2, где третий этиленовый сополимер С включает один или несколько сомономеров, содержащих от 4 до 8 атомов углерода, в количестве в диапазоне от 1 до 8 мас.% от массы третьего этиленового сополимера С.

5. Полиэтиленовая формовочная композиция по п.1 или 2, которая имеет индекс текучести расплава, измеренный в соответствии с документом ISO 1133 и выражаемый через значение ИТР1 90/5 , предпочтительно от 0,1 до 0,8 дг/мин, в особенности от 0,1 до 0,5 дг/мин.

6. Полиэтиленовая формовочная композиция по п.1 или 2, которая имеет приведенную вязкость VN полн. , измеренную в соответствии с документом ISO/R 1191 в декалине при температуре 135°С, предпочтительно от 200 до 600 см 3 /г, особенно от 250 до 550 см 3 /г, в особенности предпочтительно от 350 до 490 см 3 /г.

7. Полиэтиленовая формовочная композиция по п.1 или 2, содержащая в качестве органических полиоксисоединений полиэтиленгликоль, метоксиполиэтиленгликоль или полипропиленгликоль, предпочтительно имеющие среднюю молярную массу в диапазоне от 400 до 9000 г/моль, в количестве в диапазоне от 0,02 до 0,4 мас.%, особенно предпочтительно от 0,1 до 0,3 мас.%.

8. Способ получения полиэтиленовой формовочной композиции по одному или нескольким из пп.1-7, который включает проведение полимеризации мономеров в суспензии при температурах в диапазоне от 70 до 100°С, предпочтительно от 75 до 90°С, при давлении в диапазоне от 2 до 10 бар и в присутствии высокоактивного катализатора Циглера, который образован из соединения переходного металла и алюминийорганического соединения, и проведение полимеризации в три стадии в трех соединенных последовательно реакторах, при этом молярную массу полиэтилена, полученного на соответствующей стадии, в каждом случае устанавливают при использовании водорода.

9. Труба, изготовленная из полиэтиленовой формовочной композиции по одному или нескольким из пп.1-7, которая характеризуется стойкостью к растрескиванию под действием напряжения, обусловленного влиянием факторов окружающей среды, выражаемой через значение ИППН, большей чем 1500 ч, предпочтительно большей чем 2000 часов, особенно предпочтительно большей чем 2500 ч, и ударной вязкостью, определенной для образца с надрезом в соответствии с документом DIN 53453 при -30°С, большей чем 12,5 кДж/м 2 .