Forbidden

You don't have permission to access /zzz_siteguard.php on this server.

ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ
Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2454478

(19)

RU

(11)

2454478

(13)

C1

(51) МПК C22C38/58 (2006.01)

C22C38/50 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 27.08.2012 - действует Пошлина:

(21), (22) Заявка: 2011122121/02, 31.05.2011

(24) Дата начала отсчета срока действия патента:

31.05.2011

Приоритет(ы):

(22) Дата подачи заявки: 31.05.2011

(45) Опубликовано: 27.06.2012

(56) Список документов, цитированных в отчете о

поиске: RU 2409697 C1, 20.01.2011. RU 2205889 C1, 10.06.2003. RU 2392348 C2, 20.06.2010. RU 2303648 C1, 27.07.2007. SU 1076487 A, 28.02.1984. JP 02-104633 A, 17.04.1990. JP 06-293920 A, 21.10.1994. JP 2004-323937 A, 18.11.2004.

Адрес для переписки:

115088, Москва, ул. Шарикоподшипниковская, 4, ОАО НПО "ЦНИИТМАШ", отд.40, Л.М. Матевосову

(72) Автор(ы):

Дегтярев Александр Федорович (RU),

Назаратин Владимир Васильевич (RU),

Егорова Марина Александровна (RU),

Горбач Владимир Дмитриевич (RU),

Завьялов Юрий Николаевич (RU)

(73) Патентообладатель(и):

Дегтярев Александр Федорович (RU),

Назаратин Владимир Васильевич (RU),

Горбач Владимир Дмитриевич (RU),

Завьялов Юрий Николаевич (RU)

(54) ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ

(57) Реферат:

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, используемым для изготовления высоконагруженных немагнитных деталей, работающих в условиях коррозионного воздействия в энергомашиностроении. Сталь содержит, в мас.%: углерод 0,03-0,06, кремний 0,10-0,60, марганец 0,80-2,00, хром 22,00-24,00, никель 14,00-16,00, молибден 0,80-1,50, медь 0,80-1,50, ванадий 0,08-0,15, ниобий 0,02-0,12, азот 0,45-0,55, цирконий 0,02-0,040, церий 0,005-0,02, кальций 0,005-0,02, алюминий 0,005-0,02, железо и примеси остальное. Сталь обладает высокими механическими свойствами - 02 510 Н/мм 2 , KCU 300 Дж/см 2 , и имеет высокую стойкость к язвенной и щелевой коррозии при сохранении уровня немагнитности. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, в частности к созданию сталей, которые могут быть использованы для ряда немагнитных высоконагруженных деталей, работающих в условиях интенсивного коррозионного воздействия в энергомашиностроении и в других областях.

Изобретение наиболее эффективно может быть использовано при изготовлении высокоэффективного оборудования для специального судостроения, буровой техники и машиностроения.

Известна для этих целей коррозионно-стойкая немагнитная сталь аустенитного класса POLARIT 774 (Германия DIN 1.4539), она имеет следующий химический состав (мас.%):

Углерод

0,02

Кремний

0,7

Марганец

2,0

Сера

0,01

Фосфор

0,03

Хром

19,0-21,0

Никель

24,0-26,0

Молибден

4,0-5,0

Азот

0,15

Медь

1,20-2,0

Железо

остальное

Недостатком этой стали со стабильным аустенитом является низкая прочность и высокое содержание дорогих никеля и молибдена.

Известна для этих целей коррозионно-стойкая немагнитная сталь аустенитного класса следующего состава (мас.%):

Углерод

0,04-0,09

Кремний

0,10-0,60

Хром

19,0-21,0

Марганец

5,0-12,0

Никель

4,5-9,0

Молибден

0,5-1,5

Ванадий

0,10-0,55

Ниобий

0,03-0,30

Кальций

0,005-0,01

Азот

0,40-0,70

Железо и примеси

остальное

(см. патент RU 2205889 С1, кл. С22С 38/58, 10.06.2003).

Недостатком данной стали является большой интервал по содержанию основных легирующих элементов, что приводит к разбросу данных по механическим свойствам и структуре. При содержании аустенитообразующих элементов на нижнем уровне, а ферритообразующих на верхнем уровне в структуре стали появляется -феррит, что не позволит использовать эту сталь как немагнитную. Кроме того, из-за повышенного содержания марганца сталь не отвечает экологическим требованиям.

Известна для этих целей коррозионно-стойкая немагнитная сталь аустенитного класса следующего состава (мас.%):

Углерод

0,01-0,06

Кремний

0,10-0,68

Марганец

0,50-2,00

Хром

16,00-19,00

Никель

8,00-10,50

Азот

0,05-0,25

Церий

0,001-0,030

Кальций

0,01-0,50

Бор

0,001-0,005

Железо и примеси

остальное

(см. патент RU 2173729 C1, С22С 38/54, С22С 38/58, 20.09.2001).

Недостатком стали является низкий уровень прочности, а именно предел текучести при содержании легирующих элементов на нижнем пределе значительно ниже уровня 400 МПа. Кроме того, при таком легировании нарушается немагнитность стали.

Наиболее близкой к предложенной стали по технической сущности и достигаемому результату является сталь следующего состава (мас.%):

Углерод

0,01-0,10

Кремний

0,05-2,00

Марганец

0,10-3,00

Хром

17,00-26,00

Никель

11,00-24,50

Молибден

1,00-5,00

Азот

0,05-0,40

Ванадий

0,01-0,25

Церий

0,01-0,05

Кальций

0,001-0,15

Железо и примеси

остальное

при выполнении следующих условий [1, 2]:

(см. патент RU 2409697 С1, С22С 38/58, С22С 38/46, 20.01.2011).

Недостатком этой стали является низкий уровень прочности, а именно предел текучести при содержании легирующих элементов на нижнем пределе значительно ниже уровня 400 МПа. Кроме того, при содержании углерода, азота, никеля и марганца на нижнем уровне, а кремния, хрома, молибдена и ванадия на верхнем уровне в структуре возможно появление -феррита, который приводит к нарушению немагнитности стали и снижению коррозионной стойкости.

Технический результат - получение экологически чистой высокопрочной коррозионно-стойкой и высоковязкой немагнитной стали. Этот результат достигается тем, что предлагаемая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, азот, церий, кальций и железо, согласно предложению дополнительно содержит медь, ниобий, цирконий и алюминий при следующем соотношении компонентов (мас.%):

Углерод

0,03-0,06

Кремний

0,10-0,60

Марганец

0,80-2,00

Хром

22,00-24,00

Никель

14,00-16,00

Молибден

0,8-1,50

Медь

0,8-1,50

Ванадий

0,08-0,15

Ниобий

0,02-0,12

Азот

0,45-0,55

Цирконий

0,02-0,04

Церий

0,005-0,02

Кальций

0,005-0,02

Алюминий

0,005-0,02

Железо и примеси

остальное

при выполнении следующего условия:

ЭСП=[Cr+3,3Mo+0,7Cu+20C+20N-0,5Mn-0,25Ni],

где ЭСП - эквивалент сопротивления питтинговой коррозии. Чем выше показатель ЭСП, тем выше стойкость нержавеющей стали к язвенной и щелевой коррозии.

Введение в состав стали алюминия в 0,005-0,02 мас.% в сочетании с химически активными элементами кальцием и церием благоприятно изменяет форму неметаллических включений, снижает в стали содержание кислорода и серы, уменьшает количество сульфидных включений, очищает и упрочняет границы зерен и измельчает структуру стали, что приводит к повышению прочности, пластичности и ударной вязкости. Кальций и церий благоприятно воздействуют и на характер нитридных включений, способствуют переходу пленочных включений нитридов алюминия в глобулярные комплексы оксисульфонитридных образований. Совместное воздействие алюминия, кальция и церия открывает дополнительные возможности в управлении структурой и свойствами стали.

При содержании алюминия ниже нижнего предела его воздействие на свойства стали малоэффективно, а содержание его выше верхнего предела вызывает избыточное обогащение границ зерен неметаллическими включениями, что отрицательно сказывается на свойствах стали. Кроме того, при избыточном содержании алюминия резко снижается разливаемость стали.

Микролегирование стали с высоким содержанием азота одновременно ниобием (0,02-0,12 мас.%), ванадием (0,08-0,15 мас.%) и цирконием (0,02-0,04 мас.%) повышает прочность, пластичность и ударную вязкость термообработанной стали за счет измельчения действительного зерна, снижения содержания углерода в аустените и повышения сил межатомных связей и величины сопротивления отрыву. После оптимальной термообработки сталей происходит их сильное упрочнение с сохранением высокой ударной вязкости за счет компенсирующего влияния измельчения зерна. Карбиды и нитриды ванадия, ниобия и циркония имеют близкие параметры кристаллической решетки и обладают неограниченной взаимной растворимостью и образуют карбонитриды. Растворение при нагреве карбонитридов ниобия происходит при более высокой температуре, чем соединений ванадия. Полное растворение карбонитридов ванадия заканчивается при 800-900°С, а карбонитридов ниобия при температуре около 1100°С. Алюминий, нитрид которого растворяется в аустените при более высоких температурах, также способствует измельчению зерна и препятствует его росту при нагреве.

Дополнительное введение ниобия 0,02-0,12 мас.% способствует связыванию углерода в карбиды и карбонитриды, что препятствует образованию карбидов хрома на границах зерен и способствует повышению коррозионной стойкости. Кроме того, растворение при нагреве карбонитридов ниобия происходит при более высокой температуре, чем образование соединений ванадия при температуре около 1100°С, что способствует измельчению зерна и препятствует его росту при нагреве.

При содержании ниобия ниже нижнего предела его воздействие на величину зерна и соответственно на прочность и пластичность малоэффективно, а при содержании ниобия выше верхнего предела увеличивается количество крупных карбидов и карбонитридов, что приведет к снижению пластичности.

Дополнительное введение циркония 0,02-0,04 мас.% существенно увеличивает предел текучести стали без существенного обеднения матрицы стали азотом, а значит, достигается низкая магнитная проницаемость стали. Образующийся при введении в сталь циркония нитрид и карбонитрид циркония растворяются в аустените при более высокой температуре - более 1200°С, что способствует повышению прочности и пластичности за счет карбонитридов циркония, препятствующих росту зерна при нагреве. Дисперсные карбиды и карбонитриды оказывают барьерное действие на мигрирующую границу зерен. Карбонитриды циркония имеют более округлую форму, распределены сравнительно равномерно в литом металле, часть этих включений имеет тенденцию концентрироваться в междуветвиях дендритов и в междендритном пространстве.

При содержании циркония ниже нижнего предела (0,02 мас.%) образование нитридов и карбонитридов циркония протекает при более низких температурах, чем аналогичные соединения ванадия, что не позволяет достичь максимального значения предела текучести. При содержании циркония более 0,04 мас.% образование нитридов и карбонитридов циркония протекает при более высоких температурах, чем аналогичных соединений ванадия, что не позволяет оптимизировать режимы термообработки и снижает предел текучести стали.

Предлагаемая сталь отличается от известной рациональным содержанием углерода 0,03-0,06 мас.%, против 0,01-0,10 мас.%, что является оптимальным для обеспечения высокой технологичности и способствует получению высокой прочности, коррозионной стойкости и более высоких значений пластичности и ударной вязкости.

При содержании углерода ниже нижнего предела его действие на технологические и служебные свойства малоэффективно, кроме того, усложняются процессы выплавки, а при содержании углерода выше верхнего предела ускоряется коалесценция карбидов и обеднение твердого раствора, что снижает пластичность и коррозионную стойкость.

Предлагаемая сталь отличается от известной содержанием хрома 22,0-24,0 мас.%, против 17,0-26,0 мас.%, что является оптимальным для обеспечения стабильности аустенита и высокой коррозионной стойкости.

При содержании хрома ниже нижнего предела снижается растворимость азота в расплаве, что снижает прочность стали, а при содержании хрома выше верхнего предела возможно образование некоторого количества -феррита и нарушается немагнитность стали.

Предлагаемая сталь отличается от известной меньшим содержанием молибдена 0,8-1,50 мас.%, против 1,0-5,0 мас.%, что является оптимальным для обеспечения стабильности аустенита и высокой коррозионной стойкости.

При содержании молибдена ниже нижнего предела уменьшается коррозионная стойкость стали, а при содержании молибдена выше верхнего предела, особенно при содержании ферритообразующих элементов на верхнем уровне, возможно образование ферритной фазы, что приведет к изменению немагнитности стали.

Предлагаемая сталь отличается от известной дополнительным содержанием меди 0,80-1,50 мас.%, что является оптимальным для обеспечения стабильности аустенита, высокой прочности и коррозионной стойкости и обеспечения высокой технологичности при литье.

При содержании меди ниже нижнего предела уменьшается коррозионная стойкость стали, а при содержании меди выше верхнего предела снижается горячая пластичность стали при изготовлении деформированных изделий.

Предлагаемая сталь отличается от известной большим содержанием азота 0,45-0,55 мас.%, против 0,05-0,40 мас.%, что является оптимальным для обеспечения стабильности аустенита и высокой прочности и коррозионной стойкости.

При содержании азота ниже нижнего предела уменьшается стабильность аустенита стали, особенно при содержании ферритообразующих элементов на верхнем уровне, возможно образование ферритной фазы, что приведет к изменению немагнитности стали, а при содержании азота выше верхнего предела увеличивается количество крупных карбонитридов и нитридов, что приведет к снижению пластичности.

Предлагаемая сталь отличается рациональным содержанием марганца 0,80-2,00 мас.%, что обеспечивает экологичность проведения технологических процессов выплавки.

Содержание в составе стали углерода до 0,06 мас.%, кремния до 0,60 мас.%, марганца до 2 мас.%, никеля до 16 мас.%, хрома до 24 мас.%, молибдена до 1,50 мас.% обеспечивает возможность выплавки стали традиционными методами на обычных шихтовых материалах и одновременно позволяет получить необходимый уровень твердорастворного упрочнения аустенитной матрицы в сочетании с достаточной коррозионной стойкостью.

В таблице 1 приведен химический состав предлагаемой стали 3 плавок (1, 2, 3), а также состав стали - прототипа (4).

Выплавку проводили в 150-кг индукционной печи с разливкой металла на литые слитки. Слитки ковались на заготовки диаметром 20 мм и квадрат 12×12 мм. После закалки от температуры 1050-1070°С изготавливались образцы для механических испытаний.

В таблице 2 приведены механические свойства, полученные после оптимальной термообработки.

Испытания на растяжение проводили на цилиндрических образцах пятикратной длины с диаметром расчетной части 6 мм в соответствии с ГОСТ 1497-84. Определение ударной вязкости при нормальной температуре производилось на образцах типа 11 по ГОСТ 9454-78.

Фазовый состав металла определяли на рентгеновском дифрактометре ДРОН-4.

Как видно из таблицы 2, предлагаемая сталь имеет значительное преимущество по уровню прочности, пластичности и ударной вязкости по сравнению со сталью-прототипом. Предлагаемая сталь имеет более высокую стойкость к язвенной и щелевой коррозии. Кроме того, при заданном легировании предложенная сталь в отличие от стали-прототипа не имеет магнитной фазы.

Предложенный состав стали позволил обеспечить в структуре стали более однородную структуру, по сравнению со сталью-прототипом, что обеспечивается дополнительным легированием стали Ti, Nb и Al и выбранным соотношением элементов. Предложенная сталь экологически чиста, так как содержит минимальное количество марганца, которое необходимо для проведения технологического процесса.

Предложенная сталь может быть использована в качестве высокопрочного немагнитного коррозионно-стойкого материала для специального судостроения и буровой техники. Предлагаемая сталь прошла широкие лабораторные исследования и рекомендована к промышленному опробованию.

Таблица 1

Химический состав предлагаемой и известной сталей

Состав

Содержание элементов, мас.%

С

Si

Mn

Cr

Ni

Mo

V

Nb

Ti

Ca

Ce

N

Al

S

P

Cu

Fe

1

0,03

0,10

0,80

22,0

14,0

0,80

0,08

0,02

0,004

0,005

0,005

0,45

0,005

0,006

0,015

0,80

ост.

2

0,04

0,25

1,50

23,0

15,0

0,98

0,12

0,09

0,01

0,01

0,008

0,50

0,008

0,055

0,015

1,00

ост.

3

0,06

0,60

2,00

24,0

16,0

1,50

0,15

0,12

0,03

0,02

0,025

0,55

0,02

0,008

0,009

1,50

ост.

4

0,04

2,0

3,0

22,0

12,0

1,00

0,25

-

-

0,01

0,025

0,30

-

0,005

0,010

-

ост.

Таблица 2

Механические свойства предлагаемой и известной сталей

Состав стали

0,2 , Н/мм 2

в , Н/мм 2

, %

%

KCV, Дж/см 2

Фазовый состав (магнитность)

ЭСП

1

520

768

56

60

300

31,30

2

510

775

53

58

295

32,05

3

530

780

52

56

320

39,20

4

365

625

38

50

300

27,60

Формула изобретения

1. Высокопрочная немагнитная коррозионно-стойкая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, азот, церий, кальций, железо и примеси, отличающаяся тем, что она дополнительно содержит медь, ниобий, цирконий и алюминий при следующем соотношении компонентов, мас.%:

углерод

0,03-0,06

кремний

0,10-0,60

марганец

0,80-2,00

хром

22,00-24,00

никель

14,00-16,00

молибден

0,8-1,50

медь

0,8-1,50

ванадий

0,08-0,15

ниобий

0,02-0,12

азот

0,45-0,55

цирконий

0,02-0,04

церий

0,005-0,02

кальций

0,005-0,02

алюминий

0,005-0,02

железо и примеси

остальное

2. Высокопрочная немагнитная коррозионно-стойкая сталь по п.1, отличающаяся тем, что эквивалент сопротивления питтинговой коррозии составляет ЭСП=[Cr+3,3Mo+0,7Cu+20C+20N-0,5Mn-0,25Ni].