Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2454637

(19)

RU

(11)

2454637

(13)

C1

(51) МПК G01F23/28 (2006.01)

E21B47/04 (2012.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 27.08.2012 - действует Пошлина:

(21), (22) Заявка: 2011108415/28, 15.03.2011

(24) Дата начала отсчета срока действия патента:

15.03.2011

Приоритет(ы):

(22) Дата подачи заявки: 15.03.2011

(45) Опубликовано: 27.06.2012

(56) Список документов, цитированных в отчете о

поиске: RU 2115892 С1, 20.07.1998. RU 93118 U1, 20.04.2010. SU 1530926 А1, 23.12.1989. SU 765661 А1, 23.09.1980. SU 329397 А1, 09.11.1972. US 6085836 А, 11.07.2000. US 4213337 А, 22.07.1980.

Адрес для переписки:

121248, Москва, а/я 18, В.А. Хорошкееву, рег. 78

(72) Автор(ы):

Сидоров Александр Петрович (RU)

(73) Патентообладатель(и):

ООО Фирма "Аккрис" (RU)

(54) УСТРОЙСТВО И СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ

(57) Реферат:

Изобретения относятся к акустическим методам измерения и контроля и могут быть использованы для определения глубины уровня жидкости (границы раздела фаз) в скважинах, колодцах и резервуарах. Акустический уровнемер содержит последовательно соединенные микропроцессор, генератор импульсов, акустический преобразователь и блок регистрации, соединенный с микропроцессором. Акустический преобразователь состоит из излучателя и трех приемников - двух калибровочных, выполненных выносными с возможностью спуска и подъема на заданную глубину, и измерительного. Каждый из приемников через отдельный усилитель соединен с блоком регистрации, при этом уровнемер дополнительно снабжен модемом, который соединен с выходом блока регистрации и с микропроцессором. Способ измерения уровня жидкости и степени загазованности трубного пространства в скважине включает излучение акустического импульса, регистрацию сигналов, отраженных от поверхности жидкости измерительным приемником, при этом в скважину дополнительно опускают на разную глубину калибровочные приемники и регистрируют сигнал на них в момент прохождения акустического импульса, после чего по расчетным формулам определяют указанные характеристики. Технический результат: повышение точности измерения скорости распространения импульса за счет минимизации температурной погрешности. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретения относятся к акустическим методам измерения и контроля и могут быть использованы для определения глубины уровня жидкости (границы раздела фаз) в скважинах, колодцах и резервуарах.

Известен акустический уровнемер, включающий измерительный и эталонный датчики, каждый из которых содержит генератор импульсов, выходной усилитель и обратимый преобразователь акустических сигналов. Генераторы импульсов, а также преобразователи акустических сигналов каждого из датчиков соединены с регистрирующим блоком (SU 1569567, 1990 г.).

Известное устройство позволяет определять положение уровня жидкости только в скважинах достаточно большого диаметра при отсутствии избыточного давления и при отсутствии активного отбора из скважины нефти или газа. Для проведения замеров необходимы особые условия, а измерительное устройство маломобильно и требует большого времени для подготовки к работе.

Известны акустические уровнемеры по патентам US 4765186, 1988 г. и US 6085836, 2000 г., в схемах которых использованы по нескольку излучателей, а в последнем случае - также и несколько приемников отраженного акустического сигнала, что заметно усложняет конструкцию устройства.

Известен акустический уровнемер, содержащий генератор импульсов, усилитель, преобразователь акустических сигналов, регистрирующий блок, коммутатор, фильтр нижних частот, блок сравнения и микропроцессор (RU 2115892, 1998 г.). Основным недостатком, ограничивающим применение устройства и способа, является необходимость предварительного обследования конструкции скважины для определения глубины стыков труб, однако достоверный подсчет количества стыков по отражениям оказывается трудно реализуемым. Другим недостатком этого устройства является совмещение в одном блоке излучателя и приемника, что не позволяет принимать эхо-сигналы некоторое время после излучения зондирующего импульса (так называемая «глухая зона»). Кроме того, присутствие в схеме коммутатора и блока сравнения усложняет устройство и увеличивает его энергопотребление.

Устройство согласно предлагаемому изобретению лишено указанных недостатков.

Акустический уровнемер содержит последовательно соединенные микропроцессор, генератор импульсов, акустический преобразователь и блок регистрации, соединенный с микропроцессором. Уровнемер также снабжен модемом, соединенным с выходом блока регистрации и с микропроцессором. Акустический преобразователь состоит из излучателя и трех приемников - двух калибровочных и одного измерительного. Каждый из приемников соединен с блоком регистрации через отдельный усилитель.

Калибровочные приемники располагаются в крайних точках калибровочного зонда, выполненного в виде протяженной штанги определенной длины, которая при измерениях спускается на глубину температурной стабилизации в скважине.

Необходимость и цель введения дополнительно калибровочных приемников вызвана тем, что для реперного отражателя остается проблема «глухой зоны», которая увеличивается пропорционально глубине зондирования скважины и не позволяет создать универсальные настройки прибора для измерения ближних и дальних расстояний. Введение двух калибровочных приемников, удаленных от излучателя, устраняет проблему «глухой зоны», позволяет свести к минимуму температурную погрешность измерения скорости, а также снижает нижний предел измерения до минимально возможного и равного расстоянию до калибровочного зонда.

Потребность в использовании двух калибровочных приемников вызвана тем, что с одним приемником для калибровки будут использоваться характеристики, замеренные на участке между излучателем (на поверхности) и калибровочным приемником, опущенным на некоторую глубину. Однако именно на этом участке характеристики среды распространения звука нестабильны, например, суточные колебания температуры вблизи устья скважины. Надежность и точность калибровки заметно улучшаются, если замеры проводить на участке ниже уровня температурной стабилизации суточного периода, то есть начиная с глубины 6 м от уровня земли.

Применение двух калибровочных приемников дает возможность производить измерения в скважинах без использования отражений от стыков труб, но с измерением скорости звука в процессе текущего замера, что обеспечивает высокую точность измерения глубины уровня. Разделение излучателя и приемников в акустическом преобразователе позволяет расширить диапазон измерений за счет значительного уменьшения «глухой зоны». Изменение схемы прибора дало возможным убрать коммутатор приема, а отказ от фильтра нижних частот расширил рабочий диапазон частот и повысить точность измерений с увеличением быстродействия устройства. Исключен также блок сравнения, что снизило энергопотребление устройства. В свою очередь, оснащение устройства модемом, например, в виде радиомодема сотовой связи, обеспечивает возможность дистанционного управления параметрами процесса измерений и передачи данных от удаленного объекта.

Устройство состоит из электронного блока и акустического преобразователя. Обобщенная блок-схема устройства изображена на Фиг.1, где позицией 1 обозначен микропроцессор; 2 - генератор импульсов; 3 - акустический преобразователь, 3.1 - излучатель, 3.2в - верхний калибровочный приемник, 3.2н - нижний калибровочный приемник, 3.3 - измерительный приемник, 3.4 - усилитель измерительного приемника, 3.5 - усилители калибровочных приемников, 4 - блок регистрации; 5 - модем.

Электронный блок включает микропроцессор 1, генератор 2 импульсов, блок 4 регистрации и модем 5.

Микропроцессор 1 предназначен для управления всеми функциональными частями электронного блока и выполнения действий, задаваемых программой.

Генератор 2 импульсов предназначен для формирования частотно-модулированного сигнала и передачи его на акустический преобразователь 3.

Акустический преобразователь 3 состоит из излучателя и трех приемников с усилителями и присоединяется к устройству через разъем.

Излучатель 3.1 предназначен для преобразования электрического сигнала в акустический.

Калибровочные приемники 3.2в и 3.2н, а также измерительный приемник 3.3 предназначены для преобразования акустического сигнала в электрический.

Усилители 3.4 и 3.5 предназначены для усиления сигналов и передачи через кабель в устройство для дальнейшей обработки.

Блок регистрации 4 предназначен для регистрации, сравнения и отбора для дальнейшей обработки сигналов от акустического преобразователя.

Модем 5 предназначен для приема команд управления и передачи данных.

Определение уровня жидкости в скважине производят следующим образом. Посылают акустический частотно-модулированный сигнал в трубное пространство скважины излучателем, находящимся на устье скважины, и регистрируют сигналы тремя приемниками: двумя калибровочными и измерительным.

Измерительный приемник 3.3 находится на устье скважины рядом с излучателем 3.1 и предназначен для приема эхо-сигналов от границы газообразной и жидкой сред T L , а также от различных неоднородностей в трубном пространстве, таких как стыки труб, переход с одного диаметра на другой, гидратные пробки и т.д.

Калибровочные приемники 3.2в и 3.2н, спущенные в трубное пространство на фиксированные глубины R 1 и R 2 соответственно, предназначены для измерения времени T R прохождения акустического импульса между самими калибровочными приемниками.

Таким образом, при прохождении по трубе акустического импульса в реальном масштабе времени при помощи калибровочных приемников определяется скорость распространения импульса V= R/ T R (где R=R 2 -R 1 ) и после определения скорости фиксируется время эхо-сигнала от границы газ/жидкость и вычисляется глубина уровня L=V×T L /2.

Осциллограммы работы измерительного и калибровочных приемников приведены на Фиг.2, где вертикальная линия Т соответствует нулевой точке отсчета времени.

При этом одновременно вычисляется и степень загазованности трубного пространства над уровнем жидкости G, которую можно определить как разность измеренной скорости и скорости в чистом атмосферном воздухе, отнесенную к разности скоростей в чистом метане и чистом атмосферном воздухе.

G=(V-V 1 )/(V 2 -V 1 ), где V 1 - скорость звука в атмосферном воздухе, V 2 - скорость звука в метане (значения V 1 и V 2 известны как справочные).

Формула изобретения

1. Акустический уровнемер, содержащий последовательно соединенные микропроцессор, генератор импульсов, акустический преобразователь и блок регистрации, соединенный с микропроцессором, отличающийся тем, что акустический преобразователь состоит из излучателя и трех приемников - двух калибровочных, выполненных выносными с возможностью спуска и подъема на заданную глубину, и измерительного, каждый из которых через отдельный усилитель соединен с блоком регистрации, при этом уровнемер дополнительно снабжен модемом, который соединен с выходом блока регистрации и с микропроцессором.

2. Способ измерения уровня жидкости и степени загазованности трубного пространства в скважине, включающий излучение акустического импульса, регистрацию сигналов, отраженных от поверхности жидкости измерительным приемником, на основании которых определяется уровень жидкости и степень загазованности трубного пространства, отличающийся тем, что в скважину дополнительно опускают на разные глубины два калибровочных приемника и регистрируют сигналы на них в момент прохождения акустического импульса, после чего определяют глубину уровня жидкости по формуле:

L=( R/ T R )×(T L /2),

где L - глубина уровня жидкости;

R=R 2 -R 1 ;

R 1 - глубина спуска верхнего калибровочного приемника;

R 2 - глубина спуска нижнего калибровочного приемника;

T R - интервал времени между откликами калибровочных приемников при прохождении зондирующего импульса;

T L - время отклика измерительного приемника при возвращении эхо-сигнала от уровня жидкости.

3. Способ по п.2, отличающийся тем, что степень загазованности трубного пространства определяют по формуле:

G=(V-V 1 )/(V 2 -V 1 ),

где G - степень загазованности трубного пространства;

V - скорость распространения импульса;

V 1 - скорость звука в атмосферном воздухе;

V 2 - скорость звука в метане.

РИСУНКИ