Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2455229

(19)

RU

(11)

2455229

(13)

C2

(51) МПК C01B31/02 (2006.01)

B82B3/00 (2006.01)

B82Y40/00 (2011.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 27.08.2012 - действует Пошлина:

(21), (22) Заявка: 2010127622/05, 02.07.2010

(24) Дата начала отсчета срока действия патента:

02.07.2010

Приоритет(ы):

(22) Дата подачи заявки: 02.07.2010

(43) Дата публикации заявки: 10.01.2012

(45) Опубликовано: 10.07.2012

(56) Список документов, цитированных в отчете о

поиске: JIAQI HUANG et al. Process Intensification by CO2 for High Quality Carbon Nanotube Forest Growth: Double-Walled Carbon Nanotube Convexity or Single-Waned Nanotube Bowls?, Nano Res., 2009, v.2, p.p.872-881. RU 2354763 C2, 10.05.2009. EP 2025643 A1, 18.02.2009. US 6413487 В1, 02.07.2002. US 2005/0089467 A1, 28.04.2005. US 2009/0278114 A1,12.11.2009. EP 1544888 A1, 22.06.2005. D.SELBMANN et al. A parametric study of the synthesis and purification of single-walled carbon nanotubes using the high-pressure carbon monoxide process, Appl. Phys. A, 2008, v.90, p.p.637-643.

Адрес для переписки:

392036, г.Тамбов, ул. Ленинградская, 1, А.Г. Ткачеву

(72) Автор(ы):

Ткачев Алексей Григорьевич (RU),

Филюнина Татьяна Александровна (RU),

Маханько Андрей Анатольевич (RU),

Мележик Александр Васильевич (RU),

Рухов Артем Викторович (RU)

(73) Патентообладатель(и):

Общество с ограниченной ответственностью "НаноТехЦентр" (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ

(57) Реферат:

Изобретение относится к нанотехнологии. В реактор загружают дисперсный катализатор и подают газ, содержащий газообразное соединение углерода при температуре роста углеродного наноматериала. Газ подают в три стадии, причем содержание газообразного соединения углерода в газе составляет (объемных %): от 5 до 20 на первой стадии продолжительностью от 2 до 10 мин; от 30 до 100 на второй стадии продолжительностью от 10 до 30 мин; от 10 до 25 на второй стадии продолжительностью от 20 до 30 мин. Улучшается качество и увеличивается выход углеродного наноматериала. Способ прост и экономичен.

Способ получения углеродных наноматериалов

Известен способ получения углеродных наноматериалов, в котором дисперсный катализатор (чаще всего металлоксидный) приводят в контакт с газом, содержащим газообразное соединение углерода, например окись углерода, этилен, пропилен, ацетилен, метан, пропан, бутан, бутадиен, спирты, органические амины или другие углеродсодержащие вещества. В зависимости от природы соединения углерода и состава катализатора процесс проводят при температуре 600-1000°С в течение 2-120 мин, при этом получают углеродные наноматериалы (нановолокна, нанотрубки различной структуры). В состав газа, который контактирует с катализатором на стадии роста углеродного наноматериала, как правило, входят инертный газ (аргон или азот) и газообразное углеродсодержащее вещество. В некоторых вариантах осуществления рассматриваемого способа в газовую смесь добавляют также водород. В других вариантах применяют газообразное углеродсодержащее вещество без разбавления инертным газом или с добавкой водорода без инертного газа. Условия проведения этого процесса хорошо известны и описаны в многочисленных публикациях, например 1. Dupuis A.-C. The catalyst in the CCVD of carbon nanotubes - a review //Progress in Materials Science, 2005, vol.50, p.929-961.

2. Раков Э.Г. Нанотрубки и фуллерены: Учебное пособие. - М.: Университетская книга, Логос, 2006. - 376 с.

3. Ткачев А.Г., Золотухин И.В. Аппаратура и методы синтеза твердотельных наноструктур. М.: Издательство Машиностроение-1, 2007. - 316 с. - Раздел 6.2.

4. Мищенко С.В., Ткачев А.Г. Углеродные наноматериалы. Производство, свойства, применение. - М.: Машиностроение, 2008. - 320 с. - Раздел 2.2.

Недостатком этого способа в различных его вариантах является неоптимальное сочетание выхода и качества углеродного материала, в частности углеродных нанотрубок. При высокой концентрации углеродсодержащего вещества в газе, контактирующем с катализатором, как правило, получают высокий выход углеродного наноматериала, но качество продукта при этом недостаточное. Например, углеродные нанотрубки, полученные при высокой концентрации углеродсодержащего вещества в газе, как правило, содержат многочисленные дефекты (изломы, неоднородность внутреннего и внешнего диаметра, обрывы углеродных слоев). Снижение концентрации углеродсодержащего вещества в газе, контактирующем с катализатором, как правило, позволяет повысить качество углеродного наноматериала, а также получить технически более ценные одностенные и двустенные нанотрубки. Однако при этом резко падает выход целевого продукта.

Наиболее близким к заявляемому изобретению является способ, также описанный в различных вариантах в многочисленных публикациях, (Патент США 6413487, МПК D01F 09/12. 2002 г.) В этом способе контактирование дисперсного катализатора с газом проводят более чем в одну стадию при различном составе газа на каждой стадии, а в некоторых вариантах различные стадии проводят при разной температуре. Как правило, на первой стадии проводят контактирование дисперсного катализатора с газом, содержащим водород, для восстановления содержащихся в катализаторе оксидов переходных металлов до металлов. На второй стадии проводят контактирование восстановленного катализатора с газом, содержащим соединение углерода. При этом удается лучше контролировать выход и качество углеродного наноматериала.

Однако и этому способу присущи недостатки. Так, предварительное восстановление металлоксидного катализатора водородом при высокой температуре приводит к укрупнению частиц каталитически активных металлов, что снижает качество углеродного наноматериала, получаемого на последующей стадии. Если же стадию восстановления проводить при температуре, меньшей температуры роста углеродного наноматериала, как это делается в некоторых вариантах рассматриваемого способа, такое осуществление требует затрат энергии и времени на изменение температуры реактора, что оказывается неприемлемым при проведении процесса в промышленном масштабе, или же стадию предварительного восстановления приходится проводить в отдельном реакторе, что также увеличивает затраты и стоимость конечного углеродного наноматериала.

В основу заявляемого изобретения поставлена задача, путем изменения состава газа, контактирующего с катализатором на разных стадиях, и выбора оптимального состава газа и времени проведения стадий, устранить недостатки известного способа и его вариантов, а именно обеспечить получение качественных углеродных наноматериалов с высоким выходом.

Поставленная задача решается тем, что согласно способу получения углеродных наноматериалов, включающий загрузку в реактор дисперсного катализатора и подачу в реактор газа, содержащего газообразное соединение углерода, при температуре роста углеродного наноматериала, при этом в реактор подают газ в три стадии с различным составом газа, причем содержание газообразного соединения углерода в газе составляет (объемных %):

от 5 до 20% на первой стадии продолжительностью от 2 до 10 мин;

от 30 до 100% на второй стадии продолжительностью от 10 до 30 мин;

от 10 до 25% на второй стадии продолжительностью от 20 до 30 мин.

Благодаря проведению процесса в указанном режиме на первой стадии обеспечивается образование центров роста углеродного наноматериала оптимальной структуры. На второй стадии обеспечивается высокий выход углеродного наноматериала при сохранении структуры и качества. На третьей стадии обеспечивается доращивание углеродного наноматериала до максимального выхода, достижимого с применяемым катализатором, при сохранении качества материала и минимальном расходе углеродсодержащего газа.

Эффективность заявляемого способа иллюстрируется следующими данными. Применяли металлоксидный катализатор, представляющий собой смешанный оксид состава FеСо 0,7 Аl 2,10 О 5,35 , полученный стандартным методом пиролиза раствора кристаллогидратов нитратов металлов в водной лимонной кислоте. Для полного выжигания органических соединений катализатор выдерживали 2 ч при 600°С в муфельной печи на воздухе. Затем катализатор измельчали до размера частиц менее 0,1 мм. Навески катализатора (100 мг) помещали в горизонтальный реактор, представляющий собой кварцевую трубу диаметром 40 мм, находящуюся в горизонтальной трубчатой печи. Перед началом эксперимента и перед извлечением продукта реактор продували аргоном. В качестве газа-источника углерода применяли пропилен (99,95%). Выращивание углеродных нанотрубок проводили при 650°С из газовой смеси, содержащей аргон и пропилен. Скорость подачи аргона составляла 1 л/мин (Н.У.), скорость подачи пропилена варьировалась.

Эксперимент проводили в трехстадийном режиме согласно заявляемому изобретению, при этом скорости подачи газов составляли:

первая стадия 5 мин, аргон 1 л/мин, пропилен 0,1 л/мин (9,09 объемных % пропилена в смеси);

вторая стадия 20 мин, аргон 1 л/мин, пропилен 0,5 л/мин (33,3 объемных % пропилена в смеси);

третья стадия 25 мин, аргон 1 л/мин, пропилен 0,2 л/мин (16,66 объемных % пропилена в смеси).

В результате получили 3,60 г углеродного наноматериала, который представлял собой углеродные нанотрубки диаметром 10-15 нм.

В эксперименте сравнения выращивание углеродного наноматериала проводили в одну стадию при скорости подачи аргона 1 л/мин и пропилена 0,5 л/мин в течение 50 мин (время, равное суммарному времени трех стадий в предыдущем эксперименте). Получили 3,00 г углеродного наноматериала, в котором разброс диаметра нанотрубок был заметно больше (8-20 нм).

Таким образом, заявляемый способ позволяет улучшить качество и увеличить выход углеродного наноматериала.

Формула изобретения

Способ получения углеродных наноматериалов, включающий загрузку в реактор дисперсного катализатора и подачу в реактор газа, содержащего газообразное соединение углерода, при температуре роста углеродного наноматериала, отличающийся тем, что в реактор подают газ в три стадии с различным составом газа, причем содержание газообразного соединения углерода в газе составляет, об.%:

от 5 до 20% на первой стадии продолжительностью от 2 до 10 мин;

от 30 до 100% на второй стадии продолжительностью от 10 до 30 мин;

от 10 до 25% на второй стадии продолжительностью от 20 до 30 мин.