Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2455243

(19)

RU

(11)

2455243

(13)

C1

(51) МПК C03C3/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 27.08.2012 - действует Пошлина:

(21), (22) Заявка: 2010153427/03, 28.12.2010

(24) Дата начала отсчета срока действия патента:

28.12.2010

Приоритет(ы):

(22) Дата подачи заявки: 28.12.2010

(45) Опубликовано: 10.07.2012

(56) Список документов, цитированных в отчете о

поиске: A.N.MOISEEV et al. Production of TeO2-ZnO glasses by chemical vapor deposition from organo-metallic compounds, Journal of Optoelectronics and Advanced Materials Vol.7, No.4, August 2005, p.1875-1879. SU 1281536 A1, 07.01.1987. EP 1801815 A1, 27.06.2007. EP 1640348 A1, 29.03.2006. US 2008179294 A1, 31.07.2008.

Адрес для переписки:

603950, г.Нижний Новгород, ГСП-75, ул. Тропинина, 49, директору ИХВВ РАН М.Ф. Чурбанову

(72) Автор(ы):

Чурбанов Михаил Федорович (RU),

Дианов Евгений Михайлович (RU),

Плотниченко Виктор Геннадьевич (RU),

Снопатин Геннадий Евгеньевич (RU),

Лобанов Алексей Сергеевич (RU),

Дорофеев Виталий Витальевич (RU)

(73) Патентообладатель(и):

Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОЧИСТЫХ ТЕЛЛУРИТНЫХ СТЕКОЛ

(57) Реферат:

Изобретение относится к волоконной оптике и к разработке способа получения высокочистых теллуритных стекол. Технический результат изобретения заключается в получении высокочистых теллуритных стекол и проведении процесса в условиях безопасной работы. Инициируют реакции окисления кислородом летучих соединений исходных компонентов в газовой фазе. В качестве исходных летучих соединений используют хлориды исходных компонентов. Реакцию окисления инициируют низкотемпературной плазмой. Окисление и осаждение продуктов реакции ведут внутри опорной трубы, нагретой до 200-500°С. Труба выполнена из силикатных или теллуритных стекол. Плавление осажденного продукта ведут внутри трубы. 2 з.п. ф-лы, 1 табл., 3 пр.

Заявляемое изобретение относится к волоконной оптике и касается разработки способа получения высокочистых теллуритных стекол, которые могут быть использованы для изготовления волоконных и планарных световодов, применяемых в оптике и оптоэлектронных приборах для ближнего и среднего ИК-диапазона.

Традиционно объемные образцы теллуритных стекол получают методом плавления шихты в тигле и охлаждением стеклообразующего расплава.

Известны способы получения многокомпонентных теллуритных стекол из оксидов методом плавления шихты в тигле, выполненном из платины или золота (см., например, US 6266181, WO 2004028992). На основе этих стекол были получены оптические усилители и источники излучения. Сведений о наличии примесей в стеклах, описанных в упомянутых источниках, не приводится.

Известно, что оптические потери в световодах на основе теллуритных стекол к настоящему времени находятся на достаточно высоком уровне, например, для волоконных световодов на основе стекла системы TeO 2 -ZnO-Na 2 O-Bi 2 O 3 оптические потери составляют 900 дБ/км на длине волны 1,35 мкм, значительно превышая теоретически рассчитанные (см. J.S.Wang, Е.М.Vogel, Е.Znitzer. Tellurite glass: a new candidate for fiber devises. // Optic materials. 3, august 1994, pp.187-203).

Одной из причин высоких оптических потерь в световодах может быть значительное содержание примесей в стекле. Примеси могут содержаться как в исходных компонентах, так и поступать из материала тигля при синтезе. Поэтому низкое содержание примесей в стеклах обеспечивается использованием высокочистых исходных компонентов и тиглей, наиболее инертных к синтезируемому стеклу. Применительно к теллуритным стеклам наиболее инертными являются тигли из золота или платины (см. Rindone G.E., Rhoads J.L. The Colors of Platinum, Palladium, and Rhodiumin Simple Glasses // J. Am. Ceram. Soc. - 1956. - Vol.39, 5. - P.173-180).

Содержание платины в стеклах системы TeO 2 -WO 3 находится на уровне 10 -3 мас.% (см. M.F.Churbanov, A.N.Moiseev, A.V.Chilyasov et al. Production of high-purity TeO 2 -ZnO and TeO 2 -WO 3 glasses with the reduced content of OH-groups // J. of optoelectronics and advanced materials. Vol.9, 10, October 2007, p.3229-3234).

Известен способ получения теллуритных стекол из шихты, состоящей из оксидов теллура и цинка, полученных окислением смеси паров алкильных соединений теллура и цинка в пламени кислородно-водородной горелки, при этом упомянутые компоненты подают в зону реакции газом-носителем. Осаждение продуктов реакции ведут на боковую поверхность вращающейся цилиндрической оправки с последующим плавлением полученных осадков в платиновом тигле (см. Моисеев А.Н., Дорофеев В.В., Чилясов А.В., Кутьин A.M., Пименов В.Г., Плотниченко В.Г., Колташев В.В. Получение высокочистой шихты для варки стекол системы TeO 2 -ZnO. // Неорганические материалы - 2007. - т.43, 6. - с.762-768).

В известном способе состав осадка задан соотношением металлоорганических соединений в газовой фазе. Из паров диметилтеллура и диметилцинка в пламени горелки при температуре 1300-1500°С получены осадки системы TeO 2 -ZnO с содержанием ZnO 15-35 мол.%. В зависимости от условий осаждения получены как аморфные, так и кристаллические осадки с содержанием примесей металлов ниже пределов обнаружения прямого спектрального анализа (менее n×10 -4 -×10 -5 мас.%). Плавлением осадков в платиновом тигле получены образцы высокочистого стекла состава (TeO 2 ) 1-x (ZnO) x (0,15 x 0,35). Сведений о содержании гидроксильных групп в упомянутом источнике не приводится. Способ обеспечивает получение смеси оксидов шихты с выходом до 70% по Те(СН 3 ) 2 .

Известен способ получения теллуритных стекол из шихты, состоящей из оксидов теллура и цинка, полученных окислением смеси паров алкильных соединений теллура и цинка в пламени кислородно-водородной горелки, подаваемых в зону реакции газом-носителем. Осаждение продуктов реакции ведут на боковую поверхность вращающейся цилиндрической оправки с последующим плавлением полученных осадков в платиновом тигле (см. А.N.Moiseev, А.V.Chilyasov, V.V.Dorofeev, О.A.Vostrukhin, E.M.Dianov, В.G.Plotnichenko, V.V.Koltashev. Production of TeO 2 -ZnO glasses by chemical vapor deposition from organo-metallic compounds // Journal of Optoelectronics and Advanced Materials Vol.7, No.4, August 2005, p.1875-1879).

Как и в предыдущем источнике, состав осадка задан соотношением металлоорганических соединений в газовой фазе. Из паров диметилтеллура и диметилцинка в пламени горелки при температуре 1000-1400°С получены осадки системы TeO 2 -ZnO с содержанием ZnO 15-30 мол.% и суммарным содержанием примесей металлов не хуже 10 -4 мас.%.

Содержание гидроксильных групп в полученных стеклах оценивают по коэффициенту поглощения ОН-групп в ИК-спектрах. При дополнительной многочасовой обработке в течение нескольких часов при температуре 300-600°С в атмосфере осушенного кислорода по данным ИК-спектроскопии коэффициент поглощения ОН-групп в максимуме полосы составляет 0,15-0,3 см -1 .

Упомянутый способ выбран в качестве прототипа.

Алкильные соединения теллура и цинка являются, с одной стороны, достаточно дорогими соединениями, а с другой - неустойчивыми и взрывоопасными, требующими соблюдения строгих мер предосторожности при работе с ними. Осаждение шихты из паров алкильных соединений теллура и цинка в пламени кислородно-водородной горелки из-за взрывоопасности водорода также требует соблюдения строгих мер предосторожности в работе.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа получения высокочистых теллуритных стекол в виде тонких пленок и массивных образцов, направленного на удешевление и проведение процесса в условиях безопасной работы.

Эта задача решается за счет того, что в известном способе получения теллуритных стекол, включающем инициирование реакции окисления кислородом летучих соединений исходных компонентов в газовой фазе, подаваемых в зону реакции газом-носителем, и осаждением продуктов реакции на боковую поверхность стеклянной трубы с последующим плавлением осажденного продукта, согласно заявляемому изобретению, в качестве летучих соединений используют хлориды исходных компонентов, реакцию окисления инициируют низкотемпературной плазмой, процесс окисления ведут внутри опорной трубы, нагретой до 200-500°С, в предпочтительном варианте до 300-400°С, с осаждением продуктов реакции на ее внутреннюю поверхность и проплавлением полученного осадка внутри опорной трубы. В качестве опорной трубы используют трубы, выполненные из стекол, близких по термомеханическим стеклам к теллуритным стеклам. В предпочтительном варианте таковыми являются силикатные или теллуритные стекла.

Получены теллуритные стекла системы TeO 2 -WO 3 с содержанием примесей ряда металлов ниже пределов обнаружения прямого спектрального анализа (менее n×10 -4 -×10 -5 мас.%). Ниже приведена таблица содержания примесей металлов. Содержание примеси платины в стекле <1×10 -4 мас.%).

Коэффициент поглощения ОН-групп по данным ИК-спектроскопии находится на уровне 0,60 см -1 без дополнительной выдержки при высокой температуре в атмосфере осушенного кислорода. Способ обеспечивает получение оксидов с выходом по хлориду теллура до 95%.

Стекла системы TeO 2 -WO 3 для изменения оптических свойств, могут быть легированы третьим компонентом, например Bi 2 O 3 , или МоО 3 .

Новым в способе является то, что в качестве летучих соединений используют хлориды исходных компонентов, реакцию окисления инициируют низкотемпературной плазмой, процесс окисления ведут внутри стеклянной трубы, нагретой до 200-500°С с осаждением продуктов реакции на ее внутреннюю поверхность при 200-500°С. Температура, выбранная в интервале 200-500°С, была подобрана опытным путем и, как показали эксперименты, является необходимой с точки зрения возможного совместного осаждения продуктов реакции и получения однородных слоев TeO 2 -WO 3 с содержанием WO 3 во всей области стеклообразования для данной системы. При температуре ниже 200°С скорость осаждения продуктов реакции мала и исходные хлориды конденсируются в подводящих трубах и не поступают в зону реакции, а при температуре выше 500°С нарушается равномерность распределения макрокомпонентов по длине зоны осаждения. Это приводит к осаждению неоднородных слоев по соотношению макрокомпонентов, что ограничивает область использования полученных стекол, в частности для получения из них волоконных световодов. Предпочтительно осаждение вести в интервале температур 300-400°С, т.к. именно в этом интервале осажденные слои получают с максимально возможной однородностью по составу, что подтверждает КР-спектроскопия и рентгеноспектральный микроанализ.

Хлориды исходных компонентов дешевле алкильных соединений в 5-10 раз. Хлориды являются устойчивыми, невзрывоопасными соединениями. Отсутствие водорода в их составе обеспечивает получение стекол с коэффициентом поглощения ОН-групп в максимуме полосы на уровне 0,60 см -1 без дополнительной очистки в атмосфере осушенного кислорода. Инициирование реакции окисления низкотемпературной плазмой в условиях пониженного давления позволяет вести процесс получения шихты при более низкой в сравнении с прототипом температуре 200-500°С вместо 1000-1400°С. Высокий выход оксидов, до 95% по хлориду теллура, обеспечивает экономию исходных реагентов, что в целом повышает экономичность способа получения высокочистых теллуритных стекол. Набор хлоридов элементов с достаточно высокой летучестью шире, чем набор алкильных соединений. Поэтому заявляемый способ позволит получать большее число теллуритных стекол.

Все перечисленные признаки являются существенными, т.к. каждый необходим, а вместе они достаточны для решения поставленной задачи - разработка способа получения высокочистых теллуритных стекол в виде пленок и массивных образцов, направленного на удешевление и проведение процесса в условиях безопасной работы.

Пример 1. Осаждение смеси TeO 2 -WO 3 проводят на внутренней поверхности опорной трубки из свинцово-силикатного стекла окислением паров TeCl 4 и WCl 6 кислородом в плазме емкостного разряда. Источником ВЧ поля служил генератор с рабочей частотой 13,56 МГц и мощностью 300 Вт. Давление внутри системы составляет 7,6 мм рт.ст. Опорную трубку помещают в термостат, позволяющий поддерживать необходимую температуру во время осаждения. Температура опорной трубки составляет 350°С. Температуру контролируют пирометром. Соотношение хлоридов задают температурами испарителей и потоками аргона через них. Исходные хлориды потоком аргона подают в опорную трубку, на входе в который они смешиваются с кислородом. Твердые продукты, образующиеся после прохождения парогазовой смеси через плазмоактивированную зону, осаждаются на внутренней поверхности опорной трубки. После осаждения трубку извлекают из термостата и помещают в печь для проплавления осажденных слоев. После проплавления слоев получены стекла системы (TeO 2 ) 0.75 (WO 3 ) 0.25 с коэффициентом поглощения гидроксильных групп в максимуме полосы на уровне 0,60 см -1 . Содержание примесей в осажденных слоях, определенное методами прямого спектрального анализа и спектрального анализа с химическим обогащением пробы, представлено в таблице (см. ниже). Для определения макросостава осажденных слоев трубку извлекают из термостата, разделяют на несколько частей и анализируют методом рентгеноспектрального микроанализа. И в случае получения требуемого состава эксперимент повторяют для получения стекла заданного состава.

Пример 2. Условия опыта как в примере 1, только ведут осаждение смеси TeO 2 -WO 3 -Bi 2 O 3 на внутренней поверхности опорной трубки из теллуритного стекла окислением паров TeCl 4 , WCl 6 и BiCl 3 . Температура опорной трубы составляет 250°С. После проплавления слоев получены стекла системы TeO 2 -WO 3 -Bi 2 O 3 с содержанием Bi 2 O 3 до 10 мол.%.

Пример 3. Условия опыта как в примере 1, только ведут осаждение смеси TeO 2 -WO 3 -МоО 3 на внутренней поверхности опорной трубки из теллуритного стекла окислением паров TeCl 4 , WCl 6 и MoCl 5 . Температура опорной трубы составляет 450°С. После проплавления слоев получены стекла системы TeO 2 -WO 3 -MoO 3 с содержанием МоО 3 до 10 мол.%.

Таблица содержания примесей металлов в полученных стеклах

Примесь

TeCl 4

WCl 6

Стекло TeO 2 -WO 3

Si

<1×10 -4

1×10 -3

1×10 -3

Cu

8×10 -6

1×10 -5

1×10 -5

Ti

<6×10 -4

<6×10 -4

<6×10 -4

Al

2×10 -4

2×10 -4

<8×10 -5

Mn

2×10 -5

<2×10 -5

<2×10 -5

Cr

<1×10 -4

<1×10 -4

<1×10 -4

Pb

<1×10 -4

<1×10 -4

8×10 -5

Ni

<3×10 -4

2×10 -3

<3×10 -4

Sn

<2×10 -4

<2×10 -4

<2×10 -4

Fe

2×10 -4

1×10 -3

1×10 -4

Mg

1×10 -4

1×10 -4

1×10 -4

V

<5×10 -4

<5×10 -4

<5×10 -4

Sb

<1×10 -3

<1×10 -3

<1×10 -3

Mo

7×10 -4

<7×10 -4

2×10 -3

Ag

<3×10 -6

<5×10 -6

<3×10 -5

Bi

<5×10 -5

<5×10 -5

7×10 -5

Co

<5×10 -4

<5×10 -4

<5×10 -4

Na

<1×10 -3

2×10 -2

<1×10 -3

Pt

<1×10 -4

<2×10 -4

<1×10 -4

Формула изобретения

1. Способ получения теллуритных стекол, включающий инициирование реакции окисления кислородом летучих соединений исходных компонентов в газовой фазе, при этом исходные компоненты подают в зону реакции газом-носителем, осаждение продуктов реакции ведут на боковую поверхность стеклянной трубы с последующим плавлением осажденного продукта, отличающийся тем, что в качестве исходных летучих соединений используют хлориды исходных компонентов, реакцию окисления инициируют низкотемпературной плазмой, окисление и осаждение продуктов реакции ведут внутри опорной трубы, нагретой до 200-500°С, а плавление осажденного продукта ведут внутри трубы.

2. Способ по п.1, отличающийся тем, что труба выполнена из силикатных или теллуритных стекол.

3. Способ по п.1, отличающийся тем, что окисление и осаждение продуктов реакции ведут внутри опорной трубы, нагретой до 300-400°С.