Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2461801

(19)

RU

(11)

2461801

(13)

C1

(51) МПК G01C23/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 17.09.2012 - нет данных Пошлина:

(21), (22) Заявка: 2011138632/28, 20.09.2011

(24) Дата начала отсчета срока действия патента:

20.09.2011

Приоритет(ы):

(22) Дата подачи заявки: 20.09.2011

(45) Опубликовано: 20.09.2012

(56) Список документов, цитированных в отчете о

поиске: RU 2371733 C1, 27.10.2009. RU 2192015 C1, 27.10.2002. RU 2324953 C2, 20.05.2008. EP 0992764 A2, 12.04.2000. US 20100305781 A1, 02.12.2010.

Адрес для переписки:

140103, Московская обл., г. Раменское, ул. Гурьева, 2, ОАО "Раменское приборостроительное КБ"

(72) Автор(ы):

Никулин Александр Степанович (RU),

Алексеев Алексей Николаевич (RU),

Бабиченко Андрей Викторович (RU),

Бражник Валерий Михайлович (RU),

Джанджгава Гиви Ивлианович (RU),

Кавинский Владимир Валентинович (RU),

Лобко Сергей Валентинович (RU),

Лыткин Павел Дмитриевич (RU),

Никулина Анна Александровна (RU),

Орехов Михаил Ильич (RU),

Семаш Александр Александрович (RU)

(73) Патентообладатель(и):

Открытое акционерное общество "Раменское приборостроительное конструкторское бюро" (ОАО "РПКБ") (RU)

(54) СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ВЕТРА НА БОРТУ ЛЕТАТЕЛЬНОГО АППАРАТА И КОМПЛЕКСНАЯ НАВИГАЦИОННАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ

(57) Реферат:

Использование: в составе комплексов пилотажно-навигационного оборудования летательных аппаратов (ЛА). Способ определения скорости ветра на борту летательного аппарата (ЛА), основанный на измерении скорости ЛА относительно воздуха и счислении пути пройденного ЛА относительно воздуха, измерения путевой скорости и/или текущих координат ЛА любыми другими методами, сравнения путевой скорости с скоростью относительно воздуха и/или текущих координат ЛА с координатами, полученными счислением, и интегрировании полученных разностных сигналов по скорости и/или координатам, в котором результат сравнения скоростей и/или координат перед интегрированием изменяют в функции текущих значений курса и скорости ЛА, а само определение скорости ветра осуществляют непосредственно в процессе маневрирования ЛА по курсу. Устройство, реализующее способ определения скорости ветра, включающее взаимосвязанные датчики воздушной скорости, углов атаки и скольжения, курса и вертикали, путевой скорости и координат местоположения, блок определения составляющих вектора относительной скорости, четыре интегратора, девять сумматоров, в которое дополнительно введены блок формирования корректирующих сигналов и пятый интегратор. Техническим результатом является повышение точности определения скорости ветра на борту ЛА. 2 н.п. ф-лы, 3 ил.

Предлагаемые способ и комплексная навигационная система относятся к области авиационного приборостроения и могут быть использованы при разработке навигационного оборудования летательных аппаратов (ЛА).

В навигационных системах ЛА широко используется курсовоздушный метод счисления пути (Селезнев В.П. Навигационные устройства, М.: Машиностроение, 1974 г., гл.X).

Для обеспечения большей точности определения координат местоположения в режиме курсовоздушного счисления пути и при решении многих функциональных задач на борту ЛА необходимо иметь информацию о скорости и направлении ветра.

Теоретические и практические аспекты функционирования бортового оборудования, обеспечивающего определение и использование скорости ветра на борту ЛА, приведены в следующих работах:

1. Воробьев Л.М. Воздушная навигация, М.: Машиностроение, 1984.

2. Кирст М.А. Навигационная кибернетика полета. М.: Воениздат, 1971.

3. Помыкаев И.И., Селезнев В.П., Дмитроченко Л.А. Навигационные приборы и системы. М.: Машиностроение, 1983.

4. Ривкин С.С., Ивановский Р.И., Костров А.В. Статистическая оптимизация навигационных систем. Л.: Судостроение, 1976.

5. Рогожин В.О., Синеглазов В.М., Фiяшкiн М.К. Пiлотажно-навiгацiйнi комплекси повiтряних суден. К.: Книжкове видавництво НАУ, 2005 (на украинском языке).

6. Селезнев В.П. Навигационные устройства. М.: Машиностроение, 1974.

7. Справочник пилота и штурмана гражданской навигации. Под редакцией Васина И.Ф. М.: Транспорт, 1988.

Скорость и направление ветра обычно задаются с помощью задатчика по командам с земли либо определяются на борту ЛА каким-либо косвенным способом (см. [6], гл.X; [2], гл.VII; [5], гл.7; [7], гл.9). Измерение скорости и направления ветра непосредственно на борту ЛА более предпочтительно, т.к. позволяет постоянно уточнять их значения в районе нахождения ЛА.

В книге [6] на стр.276 описан способ измерения скорости ветра на борту ЛА, при котором скорость и направление ветра в полете получаются в результате сравнения координат ЛА X B , Y B , полученных счислением пути относительно воздуха и координат фактического места ЛА, измеренных любым из известных методов ориентировки (визуальным, астрономическим, радиотехническим и др.) X, Y.

Составляющие скорости ветра в земной системе координат равны:

,

,

где t - время счисления пути.

Конкретным примером реализации этого способа в авиационной аппаратуре может служить комбинированная навигационная система, описанная в книге [2] на стр.131-135. В этой системе в качестве интегральных ошибок системы с помощью данных радиоизмерений определяются погрешности датчика воздушной скорости и датчика курса, включающие составляющие вектора скорости ветра:

что принципиально не мешает рассматривать эту систему как определяющую составляющие скорости ветра в земной географической системе координат

В книге [6] на стр.546-556, на примере курсовоздушно-доплеровской навигационной системы, описан способ измерения скорости ветра, при котором скорость и направление ветра в полете определяют в результате сравнения скорости ЛА относительно воздуха V B , измеренной аэрометрическим методом, с путевой скоростью ЛА W, измеренной радиотехническим доплеровским методом. В принципе, для определения скорости ветра может быть использован любой метод измерения путевой скорости W, например инерциальный или широко применяемый в настоящее время радиотехнический спутниковый.

Полагаем, что в обоих случаях описан один и тот же способ определения скорости ветра, основанный на измерении параметров движения ЛА относительно воздуха и сравнении их с аналогичными параметрами движения ЛА относительно поверхности земли.

Этот способ, как наиболее близкий к предлагаемому, выбран в качестве прототипа.

При этом, учитывая, что измерителям путевой скорости и фактического места ЛА, например радиотехническим системам (ДИСС - доплеровский измеритель скорости и сноса, СНС - спутниковая навигационная система, РСБН - радиотехническая система ближней навигации, РСДН - радиотехническая система дальней навигации) присущи случайные погрешности, имеющие высокочастотный характер, полагаем, что способ предполагает статистическую фильтрацию этих погрешностей.

Как уже говорилось выше, систему, описанную в книге [2] на стр.131-135, можно рассматривать как определяющую составляющие скорости ветра в земной географической системе координат:

где X E , Y N - измеренные координаты фактического местоположения ЛА в географической системе координат, а координаты Х ЕВ , Y NB получают счислением горизонтальных составляющих вектора воздушной скорости V EB , V NB в географической системе координат относительно координат начального местоположения ЛА Х Е0 , Y N0 :

V EB =V XГ sin +V ZГ cos +U E ,

V NB =V XГ cos +V ZГ sin +U N ,

V XГ , V ZГ - составляющие вектора воздушной скорости в горизонтальной самолетной системе координат:

V XГ =V И (cos + АТ sin cos + CK sin sin ),

V ZГ =V И ( CK cos - AT sin ),

V И - продольная составляющая вектора воздушной скорости, измеряемая датчиком воздушной скорости, АТ , CK - углы атаки и скольжения, измеряемые датчиками угла атаки и угла скольжения, , , - курс, крен, тангаж, измеряемые инерциальной курсовертикалью.

Конкретным примером реализации способа-прототипа в авиационной аппаратуре, с использованием данных о путевой скорости ЛА, может служить вышеупомянутая курсо-воздушно-доплеровская навигационная система, описанная в книге [6], на стр.546-556.

В системе, описанной в книге в книге [6], на стр.546-556, составляющие скорости ветра в географической системе координат определяются путем интегрирования результатов сравнения составляющих векторов путевой W E , W N и воздушной скорости V EB , V NB :

Измеренные по способу-прототипу составляющие скорости будут определены с большими погрешностями, т.к. они включают в себя составляющую, обусловленную погрешностью датчика воздушной скорости.

U E* =U E + U EV ,

U N =U N + U NV ,

где U EV , U NV - ошибки в определении по соответствующим осям составляющих скорости ветра, обусловленные погрешностью датчика воздушной скорости, U X , U Y - действительные составляющие вектора скорости ветра.

Постоянные коэффициенты K 1 и К 2 обычно подбираются из условия минимума среднеквадратической ошибки по координатам и скорости.

Так как ошибки измерителей вектора воздушной скорости связаны с самолетной системой координат, а ветер с земной системой координат, то навигационные системы, использующие способ-прототип для измерения ветра, наиболее эффективно работают при полетах с неизменным курсом, когда положение самолетной системы координат относительно земной не меняется.

Если же ЛА совершает маневр по курсу, то входящие, в предварительно измеренный по способу-прототипу вектор скорости ветра, ошибки его измерения, обусловленные погрешностью датчика воздушной скорости, вносят дополнительные погрешности в счисляемые координаты, т.к. они разворачиваются вместе с самолетной системой координат, но продолжают учитываться в составляющих вектора скорости ветра, определенных при другом взаимоположении земной и самолетной систем координат.

Поскольку информация о скорости ветра используется при решении многих задач на борту ЛА, то точность данных о скорости ветра имеет существенное самостоятельное значение.

Целью предлагаемого изобретения является повышение точности измерения скорости ветра и расширение функциональных возможностей способа путем раздельного определения составляющих вектора скорости ветра и погрешности датчика воздушной скорости на участках маневра по курсу, при котором взаимное расположение осей земной системы координат и самолетной системы координат, в которой работает датчик воздушной скорости, меняются.

Указанная цель достигается тем, что в способе измерения скорости ветра на борту ЛА, основанном на измерении угловой ориентации и скорости относительно воздуха, счисления пути пройденного относительно воздуха, измерения путевой скорости и/или координат местоположения любым из известных методов, например инерциальным, радиотехническим или визуальным, сравнения путевой скорости с скоростью относительно воздуха и/или сравнения текущих координат с координатами, полученными счислением, и интегрирования полученных разностных сигналов по скорости и/или координатам, дополнительно результат сравнения скоростей и/или координат перед интегрированием изменяют в функции текущего значения курса, а само определение скорости ветра осуществляют непосредственно в процессе маневрирования по курсу.

Составляющие вектора скорости ветра U E , U N , погрешность датчика воздушной скорости V определяются следующим образом:

где X и Y - разностные сигналы по координатам или скорости.

При использовании разностных сигналов по координатам:

Х=Х EB -X E , Y=Y NB -Y N ,

где Х Е и Y N координаты фактического местоположения ЛА, измеренные любым из известных способов, а Х ЕВ и Y NB получают интегрированием составляющих вектора воздушной скорости в земной системе координат:

V EB =V XГ sin +V ZГ cos +U E ,

V NB =V XГ cos +V ZГ sin +U N ,

V XГ , V ZГ - составляющие вектора воздушной скорости в горизонтальной самолетной системе координат:

V XГ =(V И - V)(cos + АТ sin cos + CK sin sin ),

V ZГ =(V И - V)( CK cos - AT sin ),

V И - продольная составляющая вектора воздушной скорости, измеряемая датчиком воздушной скорости, АТ , СК - углы атаки и скольжения, измеряемые датчиками угла атаки и угла скольжения, , , - параметры угловой ориентации ЛА: курс, крен, тангаж, измеряемые инерциальной курсовертикалью.

При использовании разностных сигналов по скорости:

Х=V EB -W E , Y=V NB -W N ,

где W E и W N составляющие вектора путевой скорости, измеренные любым из известных способов.

Поскольку, как указывалось выше, в измеренных координатах фактического местоположения и путевой скорости ЛА присутствуют случайные ошибки, а курс, крен, тангаж, скорость, угол атаки и угол скольжения изменяются вследствие произвольных маневров ЛА, то для определения закона регулирования коэффициентов усиления K ij целесообразно использовать один из известных методов статистического оптимального оценивания систем с переменными параметрами, например метод оптимальной фильтрации Калмана [4], который в настоящее время широко применяется для оценивания случайных параметров, в том числе погрешностей систем, в различных областях техники.

При этом коэффициенты усиления K ij будут являться элементами изменяющейся во времени матрицы усиления K(t), определяемой матричными уравнениями:

K(t)=P(t)H(t)R -1 (t),

P(t 0 )=P 0 .

При использовании разностных сигналов по координатам матрицы H(t) и R(t) имеют вид:

При использовании разностных сигналов по скорости матрицы H(t) и R(t) имеют вид:

Матрица F(t) и начальное значение матрицы P(t) для обоих вариантов разностных сигналов имеют вид:

, ,

где , , , , - дисперсии случайных погрешностей системы по координатам, составляющим скорости ветра, воздушной скорости - дисперсии случайных погрешностей измерителя координат фактического местоположения ЛА, - дисперсии случайных погрешностей измерителя путевой скорости ЛА, а коэффициенты матрицы F(t) равны:

f 1V =sin ,

f 2V =cos .

Зависимость коэффициентов усиления K ij от текущих значений курса ЛА позволяет на участках маневра по курсу по отдельности определить составляющие скорости ветра и погрешность датчика воздушной скорости.

Предлагаемый способ измерения скорости ветра на борту ЛА выгодно отличается от способа-прототипа тем, что измерение скорости ветра производится оптимальным образом при маневрах ЛА по курсу с одновременным автоматическим определением погрешности датчика воздушной скорости, что позволяет повысить точность определения составляющих скорости ветра.

Реализация способа-прототипа в виде устройства, с учетом только существенных для предлагаемого изобретения признаков, может быть представлена в виде функциональной блок-схемы, изображенной на фиг.1.

Устройство-прототип включает в себя:

- датчик воздушной скорости (ДВС) - 1;

- датчик углов атаки и скольжения (ДУАС) - 2;

- датчик курса и вертикали (ДКВ) - 3;

- датчик путевой скорости и координат местоположения (ДСК) - 4;

- блок определения составляющих вектора относительной скорости (БОС) - 5;

- четыре интегратора (И1, И2, И3, И4) - соответственно 6, 7, 8, 9;

- шесть усилителей (У1, У2, У3, У4, У5, У6) - соответственно 10, 11, 12, 13, 14, 15;

- десять сумматоров C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 - соответственно 16, 17, 18, 19, 20, 21, 22, 23, 24, 25.

Недостатки устройства-прототипа аналогичны недостаткам способа-прототипа, приведенным выше.

Цель изобретения в виде комплексной навигационной системы (КНС) аналогична цели изобретения в виде способа, приведенной выше.

Поставленная цель для КНС, реализующей способ определения скорости ветра на борту ЛА, достигается тем, что в КНС, включающую датчик воздушной скорости, сумматор, датчик путевой скорости и координат местоположения, соединенный четырьмя выходами соответственно с входами четвертого, восьмого, пятого и девятого сумматоров, датчики углов атаки и скольжения, курса и вертикали, выходами соединенные с входами блока определения составляющих вектора относительной скорости, два выхода которого соответственно через последовательно соединенные второй сумматор, третий сумматор, первый интегратор и последовательно соединенные шестой сумматор, седьмой сумматор, второй интегратор поданы на вторые входы четвертого и восьмого сумматоров, причем вторые входы второго, шестого, пятого и девятого сумматоров соединены соответственно с выходами третьего интегратора, четвертого интегратора, второго и шестого сумматоров, введен блок формирования корректирующих сигналов, пятью входами подключенный соответственно к выходам датчика курса и вертикали, четвертого, пятого, восьмого и девятого сумматоров, а пятью выходами соединенный с входами третьего сумматора, седьмого сумматора, третьего интегратора, четвертого интегратора и вновь введенного пятого интегратора, выход которого подан на вход первого сумматора, второй вход которого соединен с выходом датчика воздушной скорости, а выход подан на третий вход блока определения составляющих вектора относительной скорости

Предлагаемая КНС представлена на фиг.2 в виде функциональной блок-схемы и включает в себя:

- датчик воздушной скорости - ДВС;

- датчик углов атаки и скольжения - ДУАС;

- датчик курса и вертикали - ДКВ;

- датчик путевой скорости и координат местоположения - ДСК;

- блок определения составляющих вектора относительной скорости - БОС;

- пять интеграторов - И1, И2, И3, И4, И5;

- девять сумматоров - C1, С2, С3, С4, С5, С6, С7, С8, С9;

- блок формирования корректирующих сигналов - БКС.

Предлагаемая КНС работает следующим образом.

ДВС измеряет продольную составляющую вектора скорости ЛА относительно воздуха - истинную воздушную скорость V И . В настоящее время для измерения истинной воздушной скорости наибольшее распространение нашли системы, основанные на аэрометрическом методе.

ДУАС измеряет углы ориентации ЛА относительно вектора воздушной скорости: угол атаки АТ и угол скольжения СК . В настоящее время для измерения углов атаки и скольжения наибольшее распространение нашли системы, основанные на аэрометрическом методе.

ДВС и ДУАС совместно реализуют функцию измерения вектора воздушной скорости ЛА.

ДСК измеряет скорость ЛА относительно земной поверхности - путевую скорость W и координаты фактического местоположения Х Е и Y N . В настоящее время для измерения составляющих вектора путевой скорости и координат фактического местоположения наибольшее распространение нашли инерциальные, радиотехнические и обзорно-сравнительные (визуальные, по полям рельефа) методы. В частности, для одновременного измерения путевой скорости и координат местоположения, на борту современных ЛА очень широко применяются спутниковые навигационные системы (СНС).

ДКВ измеряет параметры угловой ориентации ЛА относительно земной поверхности - курс , крен и тангаж . В настоящее время для измерения углов ориентации ЛА наиболее распространены системы, основанные на инерциальном методе. В качестве такого датчика может быть использована инерциальная навигационная система, инерциальная курсовертикаль, совокупность специализированных датчиков курса и вертикали.

В сумматоре C1 осуществляется учет погрешности ДВС V, оценка которой произведена на интеграторе И5:

V=V И - V.

В БОС определяются составляющие вектора воздушной скорости ЛА в земной системе координат:

V E =V[cos + AT sin cos + CK sin sin )sin +( CK cos - AT sin )cos ],

V N =V[cos + AT sin cos + CK sin sin )cos +( CK cos - AT sin )sin ].

В сумматорах C2 и C6 осуществляется учет составляющих скорости ветра U E , U N , оценка которых произведена на интеграторах И3 и И4:

V EB =V E +U E ,

V NB =V N +U N .

Счислении координат Х ЕВ и Y NB осуществляют интегрированием составляющих вектора воздушной скорости и корректирующих сигналов К1 , К2 из БКС на интеграторах И1 и И2:

где Х Е0 и Y N0 - начальные значения координат Х Е и Y N .

Составляющие вектора скорости ветра U E , U N и погрешность датчика воздушной скорости V определяют на интеграторах И3, И4 и И5 на основе корректирующих сигналов K3 , К4 , К5 из БКС следующим образом:

Корректирующие сигналы K1 , K2 , K3 , K4 , K5 в БКС формируются следующим образом:

K1 =K 11 X+K 12 Y,

K 2 =К 21 Х+K 22 Y,

K3 =K 31 X+K 32 Y,

K4 =K 41 X+K 42 Y,

K5 =K 51 X+K 52 Y,

где X и Y - разностные сигналы по координатам или скорости.

При использовании разностных сигналов по координатам сигналы X и Y формируются на сумматорах C3 и C4:

Х=Х ЕВ -X E ,

Y=Y NB -Y N ,

где Х Е и Y N координаты фактического местоположения ЛА, измеренные ДСК.

При использовании разностных сигналов по скорости сигналы Х и Y формируются на сумматорах C5 и C9:

Х=V EB -W E ,

Y=V NB -W N ,

где W E и W N составляющие вектора путевой скорости, измеренные ДСК.

Коэффициенты усиления K ij формируются в БКС и являются элементами изменяющейся во времени матрицы усиления K(t), определяемой матричными уравнениями:

K(t)=P(t)H(t)R -1 (t),

P(t 0 )=P 0 .

При использовании разностных сигналов по координатам матрицы H(t) и R(t) имеют вид:

При использовании разностных сигналов по скорости матрицы H(t) и R(t) имеют вид:

Матрица F(t) и начальное значение матрицы P(t) для обоих вариантов разностных сигналов имеют вид:

где , , , , - дисперсии случайных погрешностей системы по координатам, составляющим скорости ветра, воздушной скорости - дисперсии случайных погрешностей измерителя координат фактического местоположения ЛА, - дисперсии случайных погрешностей измерителя путевой скорости ЛА, а коэффициенты матрицы F(t) равны:

f 1V =sin ,

f 2V =cos .

Формирование в БКС коэффициентов усиления K ij в зависимости от текущих значений курса ЛА позволяет на участках маневра по курсу по отдельности оценить на интеграторах И3 и И4 составляющие скорости ветра U E , U N , а на интеграторе И5 - погрешность датчика воздушной скорости V.

Предлагаемая КНС выгодно отличается от устройства-прототипа тем, что измерение скорости ветра производится оптимальным образом при маневрах ЛА по курсу с одновременным автоматическим определением погрешности датчика воздушной скорости, что позволяет повысить точность определения составляющих скорости ветра, определения вектора воздушной скорости и счисления координат местоположения ЛА.

На фиг.3 представлены результаты моделирования работы предлагаемых способа и КНС-графики переходных процессов оценивания составляющих вектора скорости ветра U E , U N и погрешности ДВС V на участке разворота по курсу, полученные при моделировании на ЭВМ.

При этом предполагалось, что в качестве измерителя скорости и фактического местоположения используется спутниковая навигационная система и были сделаны следующие предположения:

- составляющие скорости ветра U X , U Y являются случайными процессами с корреляционными функциями вида R UxUx =R UyUy = 2 e - | | , где 2 меняется в зависимости от высоты полета и времени года в пределах 10÷25 м/сек, а коэффициент затухания корреляционной функции ветра =10 -3 ÷10 -4 сек -1 ;

- погрешность ДВС для определенной высоты и скорости полета является суммой постоянной величины V 0 и случайной функции времени типа "белого" шума V C :

V= V 0 + V C ;

- ошибка измерения составляющих вектора путевой скорости W датчиком путевой скорости представляют собой флуктуационные помехи типа белого шума, интенсивность которого

где Vx = Vy =0.2÷0.3 м/сек.

Графики переходных процессов построены для моделируемого полета со скоростью V=250 м/с, с разворотом с угловой скоростью через 50 сек после начала коррекции и значениями составляющих скорости ветра U E =20 м/сек, U N =15 м/сек и погрешности ДВС V=10 м/сек.

Из приведенных графиков следует, что можно ожидать выделение составляющих скорости ветра и ошибки ДВС с заданными точностями U= V=2 м/сек через 90-120 сек после начала разворота.

Использование предлагаемых способа и устройства в авиационной аппаратуре позволит увеличить точность решения навигационных и других задач и, следовательно, увеличить эффективность использования ЛА.

Реализация предлагаемого способа и устройств не подразумевает изменение или дополнение аппаратуры, устанавливаемой на борту ЛА, предполагает использование только известных устройств и систем из состава бортового оборудования ЛА и поэтому изобретение может быть реализовано на существующей технической базе практически на любых типах ЛА.

Формула изобретения

1. Способ определения скорости ветра на борту летательного аппарата, основанный на измерении угловой ориентации и скорости относительно воздуха, счислении пути, пройденного относительно воздуха, измерении путевой скорости и/или координат местоположения любым из известных методов, например инерциальным, радиотехническим или визуальным, сравнении путевой скорости со скоростью относительно воздуха и/или сравнении текущих координат с координатами, полученными счислением, и интегрировании полученных разностных сигналов по скорости и/или координатам, отличающийся тем, что результат сравнения скоростей и/или координат перед интегрированием изменяют в функции текущего значения курса, а само определение скорости ветра осуществляют непосредственно в процессе маневрирования по курсу.

2. Комплексная навигационная система для реализации способа определения скорости ветра на борту летательного аппарата по п.1, включающая датчик воздушной скорости, сумматор, датчик путевой скорости и координат местоположения, соединенный четырьмя выходами соответственно с входами четвертого, восьмого, пятого и девятого сумматоров, датчики углов атаки и скольжения, курса и вертикали, выходами соединенные с входами блока определения составляющих вектора относительной скорости, два выхода которого соответственно через последовательно соединенные второй сумматор, третий сумматор, первый интегратор и последовательно соединенные шестой сумматор, седьмой сумматор, второй интегратор поданы на вторые входы четвертого и восьмого сумматоров, причем вторые входы второго, шестого, пятого и девятого сумматоров соединены соответственно с выходами третьего интегратора, четвертого интегратора, второго и шестого сумматоров, отличающаяся тем, что введен блок формирования корректирующих сигналов, пятью входами подключенный соответственно к выходам датчика курса и вертикали, четвертого, пятого, восьмого и девятого сумматоров, а пятью выходами соединенный с входами третьего сумматора, седьмого сумматора, третьего интегратора, четвертого интегратора и вновь введенного пятого интегратора, выход которого подан на вход первого сумматора, второй вход которого соединен с выходом датчика воздушной скорости, а выход подан на третий вход блока определения составляющих вектора относительной скорости.

РИСУНКИ