Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2465350

(19)

RU

(11)

2465350

(13)

C2

(51) МПК C22B1/14 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 17.10.2012 - нет данных Пошлина:

(21), (22) Заявка: 2010118897/02, 11.05.2010

(24) Дата начала отсчета срока действия патента:

11.05.2010

Приоритет(ы):

(22) Дата подачи заявки: 11.05.2010

(43) Дата публикации заявки: 20.11.2011

(45) Опубликовано: 27.10.2012

(56) Список документов, цитированных в отчете о

поиске: SU 1803439 А1, 23.03.1993. RU 2266967 С1, 27.12.2005. Сабинин Ю.А и др. Влияние различных интенсификаторов при спекании многокомпонентной шихты. В сб.: Совершенствование технологии окускования железорудных материалов. Уралмеханобр, Свердловск, 1981, с.41-48. JP 54-083604 А, 03.07.1979.

Адрес для переписки:

622025, Свердловская обл., г. Нижний Тагил, ул. Металлургов, 1, ОАО "ЕВРАЗ НТМК", Ю.Д.Исупову

(72) Автор(ы):

Кобелев Владимир Андреевич (RU),

Чернавин Александр Юрьевич (RU),

Филатов Сергей Васильевич (RU),

Филиппов Валентин Васильевич (RU),

Сухарев Анатолий Григорьевич (RU)

(73) Патентообладатель(и):

Открытое акционерное общество "ЕВРАЗ Нижнетагильский металлургический комбинат" (ОАО "ЕВРАЗ НТМК") (RU)

(54) АГЛОМЕРАЦИОННЫЙ ФЛЮС, ШИХТА И СПОСОБ ЕГО ПРОИЗВОДСТВА

(57) Реферат:

Изобретение относится к подготовке флюсующих и связующих добавок в агломерационную шихту и может быть использовано при производстве железорудного агломерата. Агломерационный флюс содержит, мас.%: оксиды кальция 60,0-72,0; магния 1,2-2,0; кремния 4,0-6,0; алюминия 1,2-1,9; железа 12,0-25,0; марганца 0,5-3,5, прочие оксиды - остальное. Шихта для производства агломерационного флюса содержит, мас.%: марганецсодержащий материал 2,5-18,0; твердое топливо 8,0-14,0; железорудный материал 10,0-25,0; известняк остальное. Способ производства агломерационного флюса включает смешивание, измельчение, окомкование шихты и спекание. При этом шихта состоит из известняка, марганецсодержащего материала, железорудного материала и твердого топлива. Причем смешивание известняка и марганецсодержащего материала производят перед измельчением, измельченные компоненты смешивают с железорудным материалом и твердым топливом, увлажняют, окомковывают, загружают на агломашину. После спекания агломерационный флюс охлаждают, измельчают, подвергают гидратации путем смешивания с влажными компонентами агломерационной шихты. Изобретение позволяет получить флюс с высокой способностью интенсификации процесса спекания железорудного агломерата, снизить экологически вредные выбросы при транспортировке и хранении. 3 н.п. ф-лы, 4 табл., 1 пр.

Изобретение относится к подготовке флюсующих и связующих добавок в агломерационную шихту и может быть использовано при производстве железорудного агломерата.

Известен комплексный флюс для получения агломерата [1], включающий отходы химической обработки ванадиевого шлака и известняк. Для повышения восстановимости агломерата и извлечения легирующих элементов в чугун дополнительно вводят боратовую руду при следующем соотношении компонентов, мас.%: отходы химической обработки 62-70; боратовая руда 15-25; известняк -остальное. Комплексный флюс содержит, мас.%: 20,59-26,61 Fе 2 О 3 , 0,82-1,06 V 2 O 5 , 12,06-14,49 SiO 2 , 2,16-2,19 Аl 2 О 3 , 8,52-19,23 CaO, 1,87-3,16 MgO, 2,42-3,12 Сr 2 О 3 , 4,29-5,54 TiO 2 , 4,29-5,54 MnO, 0,88-2,46 В 2 O 3 , 2,78-7,78 SO 3 .

Недостатком комплексного флюса для получения агломерата является низкое содержание основного флюсующего оксида кальция, а также высокое содержание хрома, титана и серы, которые не позволяют получить агломерат с низким содержанием вредных примесей. Низкая флюсующая способность и низкое содержание оксида кальция не позволяют использовать комплексный флюс в качестве интенсификатора агломерационного процесса.

Наиболее близким по технической сущности и достигаемому результату является флюс и интенсификатор процесса спекания агломерационной шихты - негашеная известь [2], которая содержит, мас.%: Fe 0,1; CaO 85,76; SiO 2 0,1; Аl 2 О 3 0,4; MgO 5,5; MnO нет. Введение извести в аглошихту способствует росту удельной производительности установки на 20-50% и повышению качества агломерата.

Недостатком известного состава извести для агломерации является большой выброс в атмосферу мелких частиц извести при транспортировке и хранении, а также высокие теплоэнергетические затраты при ее производстве.

Задачей изобретения является разработка состава флюса с высокой способностью интенсификации процесса спекания железорудного агломерата, позволяющая снизить теплоэнергетические затраты при получении аглофлюса и экологически вредные выбросы при его транспортировке, хранении и использовании.

Технический результат достигается тем, что при агломерации используют агломерационный флюс, который содержит оксиды кальция, магния, кремния, алюминия, железа и марганца согласно изобретению при следующем соотношении компонентов, мас.%: оксид кальция 60,0-72,0; оксид магния 1,2-2,0; диоксид кремния 4,0-6,0; оксид алюминия 1,2-1,9; оксиды марганца 0,5-3,5; оксиды железа 12,0-25,0; прочие оксиды - остальное.

Пределы содержания оксида кальция в агломерационном флюсе обусловлены задачей снижения теплоэнергетических затрат при его получении и экологически вредных выбросов при транспортировке, хранении и использовании. Нижний предел содержания СаО в агломерационном флюсе, т.е. 60,0%, обусловлен минимально возможным содержанием СаО, обеспечивающим интенсификацию процесса спекания аглошихты и снижение теплоэнергетических затрат. При содержании СаО более 72,0% существенно повышаются экологически вредные выбросы при производстве, транспортировке и хранении агломерационного флюса.

Пределы содержания оксида магния в агломерационном флюсе обусловлены химическим составом компонентов шихты и экологически вредными выбросами при транспортировке, хранении и использовании. Нижний предел содержания МgО в агломерационном флюсе, т.е. 1,2%, обусловлен минимально возможным содержанием магнезии в компонентах шихты. При содержании МgО в агломерационном флюсе более 2,0% повышаются экологически вредные выбросы при производстве, транспортировке и хранении агломерационного флюса.

Пределы содержания диоксида кремния в агломерационном флюсе обусловлены задачей снижения теплоэнергетических затрат при его получении и экологически вредных выбросов при транспортировке, хранении и использовании. При содержании SiO 2 в агломерационном флюсе менее 4,0% повышаются экологически вредные выбросы при производстве, транспортировке и хранении. При содержании SiO 2 более 6,0% возрастают теплоэнергетические затраты при его получении.

Пределы содержания оксида алюминия в агломерационном флюсе обусловлены задачей снижения теплоэнергетических затрат при его получении и экологически вредных выбросов при транспортировке, хранении и использовании. При содержании Аl 2 O 3 в агломерационном флюсе менее 1,2% возрастают экологически вредные выбросы при транспортировке, хранении и использовании. При содержании в агломерационном флюсе Аl 2 О 3 более 1,9% повышаются теплоэнергетические затраты при его получении.

Пределы содержания оксидов марганца в агломерационном флюсе обусловлены задачей снижения теплоэнергетических затрат при его получении и экологически вредных выбросов при транспортировке, хранении и использовании. При содержании оксидов марганца в агломерационном флюсе менее 0,5% возрастают экологически вредные выбросы при производстве, транспортировке и хранении. При содержании оксидов марганца в агломерационном флюсе более 3,5% повышаются теплоэнергетические затраты при его получении.

Содержание оксидов железа в агломерационном флюсе обусловлено задачей снижения теплоэнергетических затрат при его получении и экологически вредных выбросов при транспортировке, хранении и использовании. При содержании оксидов железа в агломерационном флюсе менее 12,0% возрастают экологически вредные выбросы при производстве, транспортировке и хранении. При содержании оксидов железа в агломерационном флюсе более 25,0% повышаются теплоэнергетические затраты при его получении.

Известна шихта для производства офлюсованного марганцевого агломерата [3], которая содержит концентрат марганцевой руды, коксик, возврат, флюсующие добавки и барийсодержащий материал при следующем соотношении компонентов, мас.%: коксик 8,5-10,5; флюсующие добавки 2,5-30,0; барийсодержащий материал 0,5-25,0; возврат 15,0-25,0; концентрат марганцевой руды - остальное. В качестве концентрата марганцевой руды шихта содержит концентрат карбонатной марганцевой руды, содержащей, мас.%: Мn 26,4; SiO 2 12,96; CaO 10,58; MgO 2,4; Al 2 O 3 1,95; Fe общ 0,77; Р 0,14; потери при прокаливании 36,73.

Недостатком шихты для производства офлюсованного марганцевого агломерата является низкое содержание активного CaO и, соответственно, низкая флюсующая способность и невозможность его использования в качестве интенсификатора агломерационного процесса.

Наиболее близкой по технической сущности и достигаемому результату является шихта для производства комплексного флюса [1], содержащая отходы химической обработки ванадиевого шлака, известняк и боратовую руду при следующем соотношении компонентов, мас.%: отходы химической обработки 62-70; боратовая руда 15-25; известняк - остальное. Комплексный флюс предназначен для повышения восстановимости агломерата и извлечения легирующих элементов в чугун.

Недостатком шихты для производства комплексного флюса для получения агломерата является низкое содержание основного флюсующего оксида кальция, а также высокое содержание хрома, титана и серы, которые не позволяют получить агломерат с низким содержанием вредных примесей. Низкая флюсующая способность и низкое содержание оксида кальция не позволяют использовать комплексный флюс в качестве интенсификатора агломерационного процесса.

Задачей изобретения является разработка состава шихты для производства агломерационного флюса с высокой способностью интенсификации процесса спекания железорудного агломерата, позволяющая снизить экологически вредные выбросы при транспортировке, хранении и использовании агломерационного флюса.

Технический результат достигается тем, что шихта для производства агломерационного флюса содержит марганецсодержащий материал, известняк и твердое топливо, согласно изобретению дополнительно содержит железорудный материал при следующем соотношении компонентов, мас.%: марганецсодержащий материал 2,5-18,0; железорудный материал 10,0-25,0; твердое топливо 8,0-14,0; известняк остальное.

Пределы количества марганецсодержащего материала в шихте обусловлены задачей получения агломерационного флюса при снижении экологически вредных выбросов при транспортировке, хранении и использовании. Нижний предел количества марганецсодержащего материала составляет 2,5%, и при меньшем чем 2,5% количестве марганецсодержащего материала в шихте возрастают экологически вредные выбросы при транспортировке, хранении и использовании агломерационного флюса. Верхний предел количества марганецсодержащего материала в шихте обусловлен интенсифицирующим действием агломерационного флюса. При большем чем 18% количестве марганецсодержащего материала в шихте снижается интенсифицирующая способность агломерационного флюса.

Пределы количества железорудного материала в шихте обусловлены задачей получения агломерационного флюса и интенсификации спекания агломерационной шихты при снижении экологически вредных выбросов при транспортировке, хранении и использовании. При меньшем чем 10% количестве железорудного материала в шихте возрастают экологически вредные выбросы при транспортировке, хранении и использовании агломерационного флюса. При большем чем 25% количестве железорудного материала в шихте снижается интенсифицирующая способность агломерационного флюса.

Пределы количества твердого топлива в шихте обусловлены тепловым балансом процесса производства агломерационного флюса и экологически вредными выбросами при его производстве и использовании. Нижний предел количества твердого топлива в шихте обусловлен минимальным теплопотреблением шихты при спекании и составляет 8%. При меньшем чем 8% количестве твердого топлива в шихте возрастают экологически вредные выбросы при производстве и использовании агломерационного флюса. Верхний предел количества твердого топлива в шихте обусловлен максимальным теплопотреблением шихты при спекании и составляет 14%. При большем количестве твердого топлива в шихте снижается интенсифицирующая способность агломерационного флюса.

Известняк в шихте является основным компонентом, определяющим задачу получения агломерационного флюса с высокой способностью интенсификации процесса спекания железорудного агломерата.

Известен способ подготовки флюса для агломерационной шихты [4], включающий его предварительный обжиг и гашение водовоздушной смесью. С целью уменьшения количества непогасившихся зерен в шихте и улучшения смешивания флюса с материалом воду диспергируют в воздухе в объемном соотношении 1:(3-6) с последующей подачей полученной водовоздушной смеси струей со скоростью 0,5-2,0 м/с под углом 45-90° к направлению свободнопадающего потока обожженного продукта с перекрытием его ширины.

Недостатком известного способа подготовки флюса для агломерации является большой выброс в атмосферу мелких частиц извести и высокие теплоэнергетические затраты.

Наиболее близким по технической сущности и достигаемому результату является способ подготовки флюсов для производства офлюсованного агломерата [5], который включает раздельное дробление, сортировку каждого вида флюса и измельчение до необходимой крупности перед подачей в агломерационную шихту. После сортировки флюсы смешивают. Количество каждого вида флюса определяют в зависимости от заданного содержания оксида магния по формулам:

О d-m =[((МgО) фл. -(МgО) изв-к )/((МgО) d-m -(МgО) изв-к )]М тр , где Q d-m - количество доломита, т; (MgO) d-m - содержание оксида магния в доломите, %; (МgО) изв-к - содержание оксида магния в известняке, %; (МgО) фл. - заданное содержание оксида магния во флюсе, %; М тр - грузоподъемность транспортного средства; Q изв-к =М тр -Q d-m , где Q изв-к - количество известняка, т. Способ позволяет получить смесь флюсов с заданными пределами содержания МgО, снизить колебания по основности и содержанию МgО в офлюсованном агломерате.

Недостатком способа производства офлюсованного марганцевого агломерата является отсутствие активного СаО и, соответственно, невозможность его использования в качестве интенсификатора.

Задачей изобретения является разработка способа производства агломерационного флюса с высокой способностью интенсификации процесса спекания железорудного агломерата, позволяющая снизить экологически вредные выбросы при транспортировке, хранении и использовании агломерационного флюса.

Технический результат достигается тем, что способ производства агломерационного флюса включает шихту, состоящую из известняка, марганецсодержащего материала, железорудного материала и твердого топлива, смешивание, измельчение, окомкование шихты и спекание, согласно изобретению смешивание известняка и марганецсодержащего материала производят перед измельчением, измельченные компоненты смешивают с железорудным материалом и твердым топливом, увлажняют, окомковывают, загружают на агломашину, после спекания аглофлюс охлаждают, измельчают, подвергают гидратации путем смешивания с влажными компонентами агломерационной шихты.

Предварительное смешивание известняка с марганецсодержащим материалом обеспечивает снижение экологически вредных выбросов при транспортировке, хранении и использовании агломерационного флюса.

Совместное измельчение известняка с марганецсодержащим материалом обеспечивает высокую реакционную способность агломерационного флюса и уменьшение экологически вредных выбросов при транспортировке, хранении и использовании.

Охлаждение спеченного агломерационного флюса уменьшает экологически вредные выбросы при транспортировке и хранении.

Измельчение охлажденного агломерационного флюса повышает его интенсифицирующее действие при вводе в аглошихту.

Гидратация агломерационного флюса путем смешивания с влажными компонентами агломерационной шихты способствует повышению интенсификации процесса спекания агломерата и уменьшает экологически вредные выбросы при использовании.

Таким образом, предлагаемая совокупность существенных отличий обеспечивает заявленный технический результат, что соответствует критериям изобретения «Новизна» и «Изобретательский уровень».

Пример конкретного выполнения. В лабораторных условиях производили агломерационный флюс и испытывали его в качестве интенсификатора при получении железорудного агломерата.

Компоненты шихты для производства агломерационного флюса (содержание основных компонентов в табл.1) дозировали в заданном соотношении, смешивали, увлажняли, окомковывали и загружали в аглочашу диаметром 300 мм. После зажигания и спекания материал охлаждали, измельчали, смешивали с влажным железорудным концентратом и использовали для производства железорудного агломерата. Для сравнения результатов проводили спекания шихты по прототипу. Результаты испытаний приведены в табл.2-4.

Анализ полученных результатов показывает, что использование заявляемого агломерационного флюса, шихты и способа его производства позволяет получить флюс с высокой способностью интенсификации процесса спекания железорудного агломерата. Удельная производительность возрастает на 15,6-29,8 отн. %. Удельные теплоэнергетические затраты на производство агломерационного флюса снижаются с 10100 до 2620-3280 кДж/кг. При производстве и использовании агломерационного флюса экологически вредные выбросы (мелочь - 0,1 мм) снижаются на 4,3-45,0 абс. %.

Заявляемое техническое решение может быть реализовано в промышленности, а технический результат вытекает из совокупности существенных признаков изобретения, что свидетельствует о соответствии критерию «Промышленная применимость».

Таблица 1

Содержание (мас.%) в компонентах шихты

Элементы, оксиды

Марганецсодержащий материал

Известняк

Железорудный материал

Твердое топливо

Мn общ

10,52-13,96

-

0,03

-

Fe общ

0,57-2,74

-

63,2

-

Fe 2 O 3

0,81-3,91

0,2

60,2

1,06

SiO 2

2,88-12,60

0,5

5,78

10,72

Аl 2 O 3

1,4-2,6

0,3

0,32

4,68

СаО

32,67-40,88

52,5

1,83

0,18

МgО

0,91-2,82

0,90

0,90

0,11

Потери при прокаливании

34,00-36,00

44,0-

0,2

С

-

-

-

72,63

Летучие

-

-

-

9,27

Зола

-

-

-

17,6

Таблица 4

Результаты испытаний способа производства агломерационного флюса

Показатели

Способ

Заявляемый

Прототип

Увеличение удельной производительности спекания железорудной шихты при использовании способа, отн. %

15,6-29,8

0,5

Количество мелочи (-0,1 мм) после 3 суток, абс. %

5,5-10,2

14,5

Источники информации

1. А.с. СССР 1803439 А1, заявл. 05.02.1990, опубл. 23.03.1993, бюл. 11, МПК С22В 1/16.

2. Сабинин Ю.А., Жунев А.Г., Галатонов А.Л. и др. Влияние различных интенсификаторов при спекании многокомпонентной шихты. В сб. Совершенствование технологии окускования железорудных материалов. Уралмеханобр, Свердловск, 1981. С.41-48.

3. Заявка РФ 2007122337/02, заявл. 18.06.2007, опубл. 27.12.08, бюл. 36, МПК С22В 1/00.

4. Пат. РФ 1291619, заявл. 26.04.1985, опубл. 23.02.1987, МПК С22В 47/00; 1/14.

5. Пат. РФ 2266967, заявл. 16.03.2004, опубл. 27.12.2005, С22В 1/00.

Формула изобретения

1. Агломерационный флюс, содержащий оксиды кальция, магния, кремния, алюминия, железа и марганца, отличающийся тем, что содержит указанные оксиды при следующем соотношении компонентов, мас.%:

оксид кальция

60,0-72,0

оксид магния

1,2-2,0

диоксид кремния

4,0-6,0

оксид алюминия

1,2-1,9

оксиды марганца

0,5-3,5

оксиды железа

12,0-25,0

прочие оксиды

остальное

2. Шихта для производства агломерационного флюса, содержащая марганецсодержащий материал, известняк и твердое топливо, отличающаяся тем, что она дополнительно содержит железорудный материал при следующем соотношении компонентов, мас.%:

марганецсодержащий материал

2,5-18,0

железорудный материал

10,0-25,0

твердое топливо

8,0-14,0

известняк

остальное

3. Способ производства агломерационного флюса по п.1, включающий смешивание, измельчение, окомкование шихты и спекание, отличающийся тем, что шихта состоит из известняка, марганецсодержащего материала, железорудного материала и твердого топлива, смешивание известняка и марганецсодержащего материала производят перед измельчением, измельченные компоненты смешивают с железорудным материалом и твердым топливом, увлажняют, окомковывают, загружают на агломашину, после спекания агломерационный флюс охлаждают, измельчают, подвергают гидратации путем смешивания с влажными компонентами агломерационной шихты.