Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2465574

(19)

RU

(11)

2465574

(13)

C1

(51) МПК G01N27/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 17.10.2012 - нет данных Пошлина:

(21), (22) Заявка: 2011113356/28, 17.06.2011

(24) Дата начала отсчета срока действия патента:

17.06.2011

Приоритет(ы):

(22) Дата подачи заявки: 17.06.2011

(45) Опубликовано: 27.10.2012

(56) Список документов, цитированных в отчете о

поиске: RU 2020468 С1, 30.09.1994. RU 2027178 С1, 20.01.1995. SU 1221578 А1, 30.03.1986. WO 2006050914 А1, 18.05.2006.

Адрес для переписки:

346500, Ростовская обл., г. Шахты, ул. Шевченко, 147, ЮРГУЭС, Патентная служба

(72) Автор(ы):

Богданов Валентин Иванович (RU),

Богданов Николай Иванович (RU),

Богданов Эдуард Николаевич (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") (RU)

(54) СПОСОБ ЭЛЕКТРОМАГНИТНОГО КОНТРОЛЯ МЕХАНИЧЕСКОЙ ПРОЧНОСТИ МУФТОВЫХ СОЕДИНЕНИЙ ТРУБ В СКВАЖИНАХ

(57) Реферат:

Изобретение относится к контрольно-измерительной технике и может быть использовано для контроля магнитной проницаемости и электропроводности изделий из ферромагнитных материалов. Сущность изобретения заключается в том, что недоступное для непосредственного контроля муфтовое соединение труб помещают в переменное магнитное поле неизменной частоты первого параметрического индуктивного преобразователя, включенного в последовательный LC-колебательный контур, а доступное и заведомо исправное муфтовое соединение труб скважины помещают в переменное магнитное поле неизменной частоты второго параметрического индуктивного преобразователя, включенного в последовательный LC-колебательный контур и соединенного по дифференциальной схеме с первым параметрическим индуктивным преобразователем LC-колебательного контура, при этом емкость конденсатора первого последовательного LC-колебательного контура устанавливают такой, при которой выполняется условие равенства величины реактивного сопротивления конденсатора удвоенной величине реактивного сопротивлении индуктивного преобразователя, т.е Х C =2Х L , а емкость конденсатора второго LC-колебательного контура устанавливают такой, при которой выполняется условие равенства величины реактивного сопротивления конденсатора величине реактивного сопротивлении индуктивного преобразователя, т.е. X C =X L , и по отклонению разности напряжений от нулевого значения на первом и втором LC-колебательных контурах судят об исправном состоянии муфтового соединения. Технический результат - расширение возможностей применения способа. 3 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для контроля магнитной проницаемости и электропроводности изделий из ферромагнитных материалов, например муфтовые соединения труб в скважинах недоступные для непосредственного контроля.

Известен способ контроля физико-механических параметров изделий из ферромагнитных материалов (а.с. Способ контроля физико-механических параметров, SU 1259174, 23.09.86. Бюл. 35).

На фиг.1 представлена блок-схема устройства, реализующего способ с частотным методом выделения сигнала.

Устройство содержит генератор 1 с изменяемой частотой, соединенные последовательно параметрический индуктивный преобразователь 2, ключ 3 и эталонный резистор 4, подключенные к выходу генератора 1 с изменяемой частотой, соединенные последовательно амплитудный детектор 5, подключенный к эталонному резистору 4, и индикатор 6. Устройство содержит также конденсатор 7, подключенный параллельно индуктивному преобразователю 2 и ключу 3, и блок 8 измерений частоты, подключенный к генератору 1 с изменяемой частотой.

Для цепи из параллельно соединенных индуктивного преобразователя и компенсирующего конденсатора, подключенной к источнику переменного напряжения, удаление из цепи индуктивного преобразователя не изменяет амплитуды тока в неразветвленной части цепи, когда Х С =2X L . Это видно из уравнения тока такой цепи

где - эквивалентная проводимость разветвления цепи;

- реактивная проводимость компенсирующего конденсатора;

g·, b L - соответственно активная и реактивная проводимости индуктивного преобразователя. Из равенства получают X C =2X L .

Способ осуществляют следующим образом. В переменное магнитное поле индуктивного преобразователя помещают контролируемое изделие (не показано). Изменением частоты питающего генератора 1 при неизменном на его выходе напряжении и постоянной величине емкости компенсирующего конденсатора 7 добиваются такого состояния, когда при работающем ключе 3 прекратятся колебания стрелки индикатора 6. В этот момент прекращают изменять частоту генератора 1 и при помощи блока 8 измерения частоты измеряют рабочую частоту генератора 1. Компенсация удвоенной величины реактивной составляющей полного сопротивления индуктивного преобразователя позволяет повысить надежность и стабильность измерений за счет того, что рабочая частота генератора , определяемая из условия X C =2X L , не зависит от активного сопротивления индуктивного преобразователя, поэтому влияние внешних условий, таких как изменение температуры, сказывается в меньшей степени. Это является существенным достоинством.

Недостатками этого способа контроля физико-мезанических параметров изделий из ферромагнитных материалов являются недостаточная чувствительность к их незначительным изменениям, его невозможно применить в тех случаях контроля физико-механических параметров изделий, когда необходимо сравнение с исправными изделиями, а неисправные изделия недоступны для непосредственной оценки их состояния.

Наиболее близкий по своей сути способ электромагнитного контроля физико-механических параметров изделий из ферромагнитных электропроводящих материалов, принятый за прототип, путем сравнения полных сопротивлений индуктивных преобразователей, включенных в дифференциальную схему с двумя последовательными резонансными контурами (Неразрушающий контроль металлов и изделий. Справочник. Под ред. Г.С.Самойловича. М., «Машиностроение», 1986, рис.78, стр.269). Резонансные контуры настроены на резонанс напряжения, который возникает при равенстве реактивных сопротивлений индуктивной катушки X L и конденсатора Х С т.е. X L =Х С . Использование последовательной резонансной электрической цепи при измерениях электропроводности, толщины листов стенки труб позволяет уменьшить влияние изменения зазора между индуктивной катушкой и изделием в пределах до 0,2 мм. Однако влияние температуры на результаты измерений исключить нельзя. Это является недостатком способа прототипа.

Задача предлагаемого изобретения - расширение возможностей применения способа электромагнитного контроля физико-механических параметров изделий из ферромагнитных материалов для оценки механической прочности муфтовых соединений труб в скважинах (фиг.2. Схема участка муфтового соединения труб в скважинах). На схеме обозначено: 10 - обсадная труба скважины, 12 - труба, например, насоса скважины, 11 - муфта резьбового соединения труб, 2 - индуктивный преобразователь.

Технический результат достигается тем, что электрическая схема, показанная на фиг.3, с помощью которой реализуется способ, содержит: генератор с изменяемой частотой переменного тока 1, к выводам которого подключена дифференциальная схема с двумя последовательными резонансными колебательными контурами. Первый колебательный контур содержит последовательно соединенные амперметр переменного тока 13, конденсатор с переменной величиной емкости 7, который может отключаться и включаться с помощью ключа 3, и индуктивный преобразователь 2. Второй колебательный контур содержит последовательно соединенные амперметр переменного тока 13, конденсатор с переменной величиной емкости 7 и индуктивные преобразователи 2. Вывод генератора 1, к которому подключены выходы индуктивных преобразователей 2, образует электрическую шину (общий проводник, к которому подключаются другие электрические элементы).

Разностный сигнал переменного тока от входов индуктивных преобразователей 2 преобразуется в сигнал постоянного тока с помощью двух полупроводниковых детекторов диодов 14 и двух электрических RC-фильтров, состоящих из конденсаторов 15, и резисторов 16, имеющих потенциометрические выводы. К потенциометрическим выводам резисторов 16 подключен вольтметр постоянного тока 17.

Первый последовательный резонансный контур настраивается на резонансное явление, возникающее при условии равенства величины реактивного сопротивления конденсатора 7 удвоенной величине реактивного сопротивления индуктивного преобразователя 2. Это явление достигается следующим образом. Для цепи из последовательно соединенных конденсатора и индуктивного преобразователя, подключенной к источнику переменного напряжения, короткое замыкание пластин конденсатора не приводит к изменению амплитуды тока в индуктивном преобразователе, когда величина удвоенного реактивного сопротивления индуктивного преобразователя X L равна величине реактивного сопротивления конденсатора X C . Это видно из уравнения тока в преобразователе при включенном в цепь и выключенном из цепи конденсаторе при условии X C =2X L

где R д - активное сопротивление преобразователя (датчика).

При невыполнении условия X C =2X L уменьшается величина тока индуктивного преобразователя.

Второй последовательный резонансный контур настраивается на явление резонанса напряжений. Оно возникает при условии равенства величины реактивного сопротивления конденсатора 7 величине реактивного сопротивления индуктивного преобразователя 3, т.е. X C =X L . При этом величина переменного тока в этом резонансном контуре по показаниям амперметра 13 будет наибольшей.

Частота переменного тока генератора при электромагнитном контроле и оценке механической прочности резьбового соединения труб в скважинах с помощью муфт, фиг.2, устанавливается такой, при которой глубина распределения вихревых токов возникающих в электропроводящем материале, была бы не более суммы толщины стенки трубы и половины толщины стенки муфты. Расчет распределения вихревых токов по глубине h электропроводящего материала производится по формуле (Неразрушающий контроль металлов и изделий. Справочник. Под ред. Г.С.Самойловича. М., «Машиностроение», 1986, стр.208)

h=1/ f µ,

где -число 3,14; f - частота переменного тока;

- электрическая проводимость; µ - магнитная проницаемость.

Измерения по прилагаемому способу осуществляется следующим образом. В электромагнитное поле первого и второго индуктивных преобразователей размешают в доступном для контроля образце с заведомо исправным резьбовым соединением трубы скважины с помощью муфты (фиг.2).

Изменяют величину емкости конденсатора 7 первого резонансного контура и при работающем ключе 3 добиваются отсутствия колебания стрелки амперметра 13. Так создают условие равенства X C =2X L , при котором работает первый резонансный контур. Ключ 3 оставляют в разомкнутом состоянии (фиг.3).

Изменяют величину емкости конденсатора 7 второго резонансного контура и добиваются максимального познания амперметра 13. Это одно из условий возникновения резонанса напряжений во втором резонансном контуре, когда X L =X С , (фиг.3).

Изменяют положения потенциометрических выводов резисторов 16 электрических фильтров, добиваются отсутствия показания вольтметра постоянного тока 17 (фиг.3).

Индуктивный преобразователь 2 первого резонансного контура помещают поочередно в муфтовые соединения по всей длине трубы в скважине (фиг.2) и по отклонению от нулевого значения показания вольтметра постоянного тока 17, (фиг.3) судят о механической прочности конкретного муфтового соединения трубы в скважине. Резьбовое соединение трубы с помощью муфты может быть нарушено коррозионным процессом, либо когда в начале эксплуатации резьбовое соединение выполнено некачественно.

Предлагаемый способ позволит предупредить при выемке трубы, например скважинного насоса, аварию, которая значительно усложнит ремонт скважины.

Формула изобретения

Способ электромагнитного контроля механической прочности муфтовых соединений труб в скважинах заключающийся в том, что недоступное для непосредственного контроля муфтовое соединение труб помещают в переменное магнитное поле неизменной частоты первого параметрического индуктивного преобразователя, включенного в последовательный LC-колебательный контур, а доступное и заведомо исправное муфтовое соединение труб скважины помещают в переменное магнитное поле неизменной частоты второго параметрического индуктивного преобразователя, включенного в последовательный LC-колебательный контур и соединенного по дифференциальной схеме с первым параметрическим индуктивным преобразователем LC-колебательного контура, отличающийся тем, что емкость конденсатора первого последовательного LC-колебательного контура устанавливают такой, при которой выполняется условие равенства величины реактивного сопротивления конденсатора удвоенной величине реактивного сопротивления индуктивного преобразователя, т.е X C =2X L , а емкость конденсатора второго LC-колебательного контура устанавливают такой, при которой выполняется условие равенства величины реактивного сопротивления конденсатора величине реактивного сопротивления индуктивного преобразователя, т.е. X C =X L и по отклонению разности напряжений от нулевого значения на первом и втором LC-колебательных контурах судят об исправном состоянии муфтового соединения.

РИСУНКИ