Forbidden

You don't have permission to access /zzz_siteguard.php on this server.

ВРАЩАЮЩАЯСЯ ЛОПАТКА ПАРОВОЙ ТУРБИНЫ (ВАРИАНТЫ)
Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2472943

(19)

RU

(11)

2472943

(13)

C2

(51) МПК F01D5/20 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 17.01.2013 - нет данных Пошлина:

(21), (22) Заявка: 2008129040/06, 15.07.2008

(24) Дата начала отсчета срока действия патента:

15.07.2008

Приоритет(ы):

(30) Конвенционный приоритет:

16.07.2007 US 11/778,187

(43) Дата публикации заявки: 20.01.2010

(45) Опубликовано: 20.01.2013

(56) Список документов, цитированных в отчете о

поиске: ТРУХНИЙ А.Д., ЛОМАКИН Б.В. Теплофикационные паровые турбины и турбоустановки: Учебное пособие для вузов. - М.: изд. МЭИ, 2002, с.65-71. WO 2007000326 A1, 04.01.2007. RU 2264541 C2, 20.11.2005. SU 232986 A1, 01.01.1969. US 5267834 A, 07.12.1993. US 5509784 A, 23.04.1996. US 5277549 A, 11.01.1994.

Адрес для переписки:

129090, Москва, ул.Б.Спасская, 25, стр.3, ООО "Юридическая фирма Городисский и Партнеры", пат.пов. А.В.Мицу, рег. 364

(72) Автор(ы):

МУЙЕЗИНОВИЧ Амир (US),

СЛЕПСКИ Джонатан (US),

ДЕЛЕССИО Стивен (US)

(73) Патентообладатель(и):

НУОВО ПИНЬОНЕ ХОЛДИНГ СПА (IT)

(54) ВРАЩАЮЩАЯСЯ ЛОПАТКА ПАРОВОЙ ТУРБИНЫ (ВАРИАНТЫ)

(57) Реферат:

Вращающаяся лопатка для паровой турбины содержит: участок хвостовика, участок аэродинамической поверхности, примыкающий к участку хвостовика, участок венца, непрерывный с участком аэродинамической поверхности и имеющий ширину венца, и крышку. Участок аэродинамической поверхности, примыкающий к участку хвостовика, имеет такую форму, чтобы оптимизировать аэродинамическую характеристику, обеспечивая при этом оптимизированное распределение потока и минимальные центробежные и изгибающие напряжения. Крышка выполнена в виде части участка венца. Крышка образует радиальное уплотнение, которое минимизирует потери у венца. Крышка шире, чем ширина венца, так что на скорости крышка входит в зацепление с расположенной рядом крышкой соседней лопатки. Площадь выходного кольцевого канала лопатки составляет 0,461 м 2 . Диапазон рабочих скоростей лопатки составляет от 5625 до 11250 оборотов в минуту. Максимальный массовый расход лопатки - 30,9 кг/с. Лопатки турбины могут быть эффективно использованы в работе при более высоких рабочих скоростях. 2 н. и 6 з.п. ф-лы, 4 ил.

Уровень техники

Настоящее изобретение относится к вращающейся лопатке паровой турбины и, более конкретно, к вращающейся лопатке паровой турбины с оптимизированной геометрией, способной работать при увеличенных рабочих скоростях.

Канал для прохода пара паровой турбины образован неподвижным цилиндром и ротором. Множество неподвижных лопаток прикреплены к цилиндру по окружности и проходят внутрь в канал для прохода пара. Аналогично, множество вращающихся лопаток прикреплено к ротору по окружности и проходят наружу в канал для прохода пара. Неподвижные лопатки и вращающиеся лопатки расположены чередующимися рядами так, что ряд лопаток и расположенный непосредственно ниже по потоку ряд лопаток образуют ступень. Лопатки служат для направления потока пара таким образом, чтобы он входил в расположенный ниже по потоку ряд лопаток под надлежащим углом. Аэродинамическая поверхность лопатки извлекает энергию из пара, тем самым, развивая необходимую мощность для приведения ротора, и нагрузку, прикладываемую к нему.

Количество энергии, извлекаемой каждым рядом вращающихся лопаток, зависит от размера и формы аэродинамических поверхностей лопатки, а также количества лопаток в ряду. Таким образом, формы аэродинамических поверхностей лопаток являются важным фактором в термодинамической производительности турбины, а определение геометрии аэродинамических поверхностей лопаток - важной частью конструкций турбины.

Когда пар проходит через турбину, его давление падает через каждую последующую ступень до тех пор, пока не достигается требуемое давление на выходе. Таким образом, характеристики пара, то есть температура, давление, скорость и содержание влаги, изменяются от ряда к ряду, когда пар расширяется через канал для прохода пара. Следовательно, каждый ряд лопаток использует лопатки, имеющие форму аэродинамической поверхности, которая оптимизирована для параметров пара, связанных с этим рядом. Однако в ряду формы аэродинамических поверхностей лопаток идентичны, кроме некоторых турбин, в которых формы аэродинамических поверхностей отличаются среди лопаток в ряду для изменения резонансных частот.

Аэродинамические поверхности лопаток проходят от хвостовика лопатки, используемого для прикрепления лопатки к ротору. Обычно это выполняется, придавая хвостовику форму елочки, образуя приблизительно проходящие по оси чередующиеся выступы и канавки вдоль сторон хвостовика лопатки. Пазы, имеющие сопрягаемые выступы и канавки, выполняют в диске ротора. Когда хвостовик лопатки перемещают скольжением в паз диска, центробежная нагрузка на лопатку, которая очень высока вследствие высокой скорости вращения ротора, распределяется вдоль участков выступов, по которым контактируют хвостовик и диск. Ввиду приложения высокой центробежной нагрузки напряжения в хвостовике лопатки и пазу диска очень высоки. Поэтому важно минимизировать концентрации напряжений, образуемые выступами и канавками, и максимизировать опорные поверхности, на которых возникают контактные усилия между хвостовиком лопатки и пазом диска. Это особенно важно в последних рядах паровой турбины низкого давления вследствие большого размера и веса лопаток в этих рядах и наличия коррозии под напряжением вследствие влажности в канале для прохода пара.

Кроме устойчивого приложения центробежной нагрузки лопатки также подвергаются вибрации.

Вращающиеся лопатки турбины участка низкого давления обычно выполняют и оптимизируют, чтобы обеспечивать заданную рабочую скорость, как требуется различными применениями (см. например, патент США 5,267,834, F01D 5/14, 07.12.1993). Основными рабочими параметрами являются площадь кольцевого канала, скорость вращения, массовый расход и для лопатки последней ступени -давление конденсации.

Трудность, связанная с конструированием лопатки паровой турбины, осложняется тем, что форма аэродинамической поверхности определяет, в значительной степени, и силы, прикладываемые к лопатке, и ее механическую прочность и резонансные частоты, а также термодинамическую характеристику лопатки. Эти соображения накладывают ограничения на выбор формы аэродинамической поверхности лопатки так, что, при необходимости, оптимальная форма аэродинамической поверхности лопатки для заданного ряда является вопросом компромисса между ее механическими и аэродинамическими свойствами.

Поэтому необходимо создать ряд лопаток паровой турбины, который обеспечивает хорошую термодинамическую характеристику, в то же время минимизируя напряжения на аэродинамической поверхности лопатки и хвостовике, вследствие центробежной силы, и избегая резонансного возбуждения.

Раскрытие изобретения

Задачей, на которой направлено настоящее изобретение, является создание вращающейся лопатки паровой турбины.

Указанная задача решается посредством вращающейся лопатки паровой турбины, содержащей участок хвостовика, участок аэродинамической поверхности, примыкающий к участку хвостовика, причем участок аэродинамической поверхности имеет такую форму, чтобы оптимизировать аэродинамическую характеристику, обеспечивая при этом оптимизированное распределение потока и минимальные центробежные и изгибающие напряжения, участок венца непрерывный с участком аэродинамической поверхности, и крышку, выполненную в виде части участка венца, причем крышка образует радиальное уплотнение, которое минимизирует потери у венца, при этом площадь выходного кольцевого канала составляет 0,461 м 2 .

Диапазон рабочих скоростей лопатки предпочтительно составляет от 5625 до 11250 оборотов в минуту.

Максимальный массовый расход предпочтительно составляет 30,9 кг/с.

Диапазон рабочих скоростей лопатки предпочтительно составляет от 5625 до 11250 оборотов в минуту.

Лопатка предпочтительно выполнена с возможностью работы в качестве лопатки последней ступени.

Крышка предпочтительно имеет такой размер, что на скорости она входит в зацепление с расположенной рядом крышкой соседней лопатки.

Крышка предпочтительно выполнена за одно целое с участком венца.

Радиальное уплотнение предпочтительно содержит по меньшей мере одно концевое уплотнение.

Указанная задача также решается посредством вращающейся лопатки паровой турбины, содержащей участок хвостовика, участок аэродинамической поверхности, примыкающий к участку хвостовика, причем участок аэродинамической поверхности имеет такую форму, чтобы оптимизировать аэродинамическую характеристику, обеспечивая при этом оптимизированное распределение потока и минимальные центробежные и изгибающие напряжения, участок венца непрерывный с участком аэродинамической поверхности и имеющий ширину венца, и крышку, выполненную в виде части участка венца, причем крышка образует радиальное уплотнение, которое минимизирует потери у венца, при этом крышка шире, чем ширина венца, так что на скорости крышка входит в зацепление с расположенной рядом крышкой соседней лопатки, причем площадь выходного кольцевого канала лопатки составляет 0,461 м 2 , диапазон рабочих скоростей лопатки составляет от 5625 до 11250 оборотов в минуту, а максимальный массовый расход лопатки - 30,9 кг/с.

Техническим результатом, который достигается посредством настоящего изобретения, является обеспечение хорошей термодинамической характеристики, уменьшение напряжения на аэродинамической поверхности лопатки и хвостовике, вследствие центробежной силы, и избегание резонансного возбуждения.

Краткое описание чертежей

Фиг.1 представляет собой вид спереди вращающейся лопатки паровой турбины;

Фиг.2 представляет собой вид в перспективе;

Фиг.3 представляет собой вид сверху крышки лопатки; и

Фиг.4 представляет собой крышку и венец лопатки.

Подробное описание изобретения

Со ссылкой на фиг.1 и 2, вращающаяся лопатка паровой турбины включает в себя участок 2 хвостовика, соединенный с осевым входным элементом 3 типа «ласточкин хвост» для соединения ротором турбины. Как показано, элемент 3 типа «ласточкин хвост» имеет форму елочки с двумя крюками. Предмет находящейся одновременно на рассмотрении заявки на патент США, геометрия осевого входного элемента типа «ласточки хвост» была оптимизирована для получения распределения среднего и местного напряжения, которое гарантирует достаточную защиту для превышения скорости и границы LCF (малоцикловой усталости).

Аэродинамическая поверхность 10 проходит от участка 2 хвостовика, при этом участок 4 венца непрерывен с участком 10 аэродинамической поверхности. Как показано на фиг.3 и 4, крышка 5 выполнена в виде части участка 4 венца.

Для обеспечения рабочих скоростей, которые составляют в диапазоне от 5625 до 11250 оборотов в минуту с максимальным массовым расходом 30,9 кг/с и площадью выходного кольцевого канала 0,461 м 2 , была выполнена вычислительная гидродинамика для оптимизирования геометрии аэродинамической поверхности. Массовый расход и площадь кольцевого канала являются важными конструктивными параметрами, как ясно специалистам в данной области техники. «Площадь выходного кольцевого канала» - это площадь кольцевой формы, образованной у основания вершиной элемента лопатки типа «ласточкин хвост» и у вершины нижней стороны крышки. Оптимизированная геометрия может обеспечивать более высокие рабочие скорости, в то же время, избегая связанных увеличении напряжения и вопросов частоты. В частности, участок 10 аэродинамической поверхности имеет оптимальное соотношение наклона к ширине. Более того, распределение толщины вдоль участка 10 аэродинамической поверхности изменено из обычной конструкции для оптимизирования характеристики. Кроме того, кривизна участка 10 аэродинамической поверхности регулируется для уменьшения давления и потерь на ударах в результате работы на высокой скорости. Расположение друг над другом участков аэродинамического профиля оптимизировано для минимизации локального напряжения хвостовика лопатки, вызываемого центробежным скручиванием лопатки.

На Фиг.3 и 4 показана крышка 5 лопатки на видах сверху и сбоку, соответственно. Крышка 5 предпочтительно обрабатывается на станке с лопаткой и, таким образом, составляет одно целое с участком 4 венца. Крышка 5 включает в себя, по меньшей мере одно, предпочтительно два концевых уплотнения 12 и цилиндрические поверхности, обработанные на станке, на лопатке обеспечения контроля за утечкой.

Как показано на фиг.4, крышка 5 выполнена с большей шириной, чем ширина участка 4 венца. Такая конструкция наряду со скручиванием в лопатке определяет начальный зазор между контактными поверхностями крышек соседних лопаток. Этот зазор закрывается на скорости, как следствие вращения крышки, вызываемого раскручиванием лопатки. Как только крышки соседних лопаток зацепляют друг друга, лопатки ведут себя как единая непрерывно сцепленная конструкция, которая демонстрирует более высокие характеристики жесткости и демпфирования по сравнению с конструкцией расположенных отдельно лопаток, приводящая к очень низким вибрационным напряжениям. То есть, зацепленные крышки между соседними лопатками образуют полосу крышек или бандаж вокруг внешней периферии колеса турбины для ограничения рабочей текучей среды в пределах заданного потока и увеличения жесткости лопаток.

Вращающиеся лопатки паровой турбины, описанные здесь, обеспечивают значительно улучшенную аэродинамическую и механическую производительность и эффективности, при этом также имеют крышки с радиальным уплотнением для минимизации потерь у венцов, минимальные центробежные и изгибающие напряжения, непрерывно сцепленную конструкцию крышек для минимизации вибрационных напряжений, уменьшенные потери производительности и оптимизированное распределение потока. Как таковые, лопатки турбины могут быть эффективно использованы в работе при более высоких рабочих скоростях.

Хотя изобретение было описано в отношении того, что в настоящее время считается наиболее практичными и предпочтительными вариантами осуществления, следует понимать, что изобретение не ограничено раскрытыми вариантами осуществления, а наоборот, охватывает различные модификации и эквиваленты, включенные в пределы сущности и объема прилагаемой формулы изобретения.

Формула изобретения

1. Вращающаяся лопатка паровой турбины, содержащая:

участок (2) хвостовика;

участок (10) аэродинамической поверхности, примыкающий к участку хвостовика, причем участок аэродинамической поверхности имеет такую форму, чтобы оптимизировать аэродинамическую характеристику, обеспечивая при этом оптимизированное распределение потока и минимальные центробежные и изгибающие напряжения;

участок (4) венца непрерывный с участком аэродинамической поверхности; и

крышку (5), выполненную в виде части участка венца, причем крышка образует радиальное уплотнение, которое минимизирует потери у венца, при этом площадь выходного кольцевого канала составляет 0,461 м 2 .

2. Лопатка по п.1, в которой диапазон рабочих скоростей лопатки составляет от 5625 до 11250 об/мин.

3. Лопатка по п.2, в которой максимальный массовый расход составляет 30,9 кг/с.

4. Лопатка по п.1, в которой она выполнена с возможностью работы в качестве лопатки последней ступени.

5. Лопатка по п.4, в которой крышка (5) имеет такой размер, что на скорости она входит в зацепление с расположенной рядом крышкой соседней лопатки.

6. Лопатка по п.1, в которой крышка (5) выполнена за одно целое с участком (4) венца.

7. Лопатка по п.1, в которой радиальное уплотнение содержит по меньшей мере одно концевое уплотнение (12).

8. Вращающаяся лопатка для паровой турбины, содержащая:

участок (2) хвостовика;

участок (10) аэродинамической поверхности, примыкающий к участку хвостовика, причем участок аэродинамической поверхности имеет такую форму, чтобы оптимизировать аэродинамическую характеристику, обеспечивая при этом оптимизированное распределение потока и минимальные центробежные и изгибающие напряжения;

участок (4) венца непрерывный с участком аэродинамической поверхности и имеющий ширину венца; и

крышку (5), выполненную в виде части участка венца, причем крышка образует радиальное уплотнение, которое минимизирует потери у венца, при этом крышка шире, чем ширина венца, так что на скорости крышка входит в зацепление с расположенной рядом крышкой соседней лопатки, причем площадь выходного кольцевого канала лопатки составляет 0,461 м 2 , диапазон рабочих скоростей лопатки составляет от 5625 до 11250 об/мин, а максимальный массовый расход лопатки - 30,9 кг/с.

РИСУНКИ