Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2473169

(19)

RU

(11)

2473169

(13)

C1

(51) МПК H03M1/08 (2006.01)

G06F17/00 (2006.01)

H04L27/22 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 17.01.2013 - нет данных Пошлина:

(21), (22) Заявка: 2011147027/08, 18.11.2011

(24) Дата начала отсчета срока действия патента:

18.11.2011

Приоритет(ы):

(22) Дата подачи заявки: 18.11.2011

(45) Опубликовано: 20.01.2013

(56) Список документов, цитированных в отчете о

поиске: RU 2382495 C1, 20.02.2010. RU 2231118 C1, 20.06.2004. RU 2216748 C2, 20.11.2003. US 2007/0254594 A1, 01.11.2007. US 2009/0268830 A1, 29.10.2009.

Адрес для переписки:

194064, Санкт-Петербург, Тихорецкий пр., 3, ВОЕННАЯ АКАДЕМИЯ СВЯЗИ, Бюро изобретательства

(72) Автор(ы):

Дворников Сергей Викторович (RU),

Дворников Александр Сергеевич (RU),

Егоров Сергей Александрович (RU),

Казаков Евгений Валерьевич (RU),

Мандрик Игорь Витальевич (RU),

Малых Дмитрий Олегович (RU),

Устинов Андрей Александрович (RU),

Чихонадских Александр Павлович (RU)

(73) Патентообладатель(и):

Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации (RU)

(54) СПОСОБ АВТОМАТИЧЕСКОГО ОБНАРУЖЕНИЯ СИГНАЛОВ

(57) Реферат:

Изобретение относится к способам обнаружения радиосигналов (PC). Техническим результатом является расширение функциональных возможностей в части обеспечения обнаружения одиночных PC в условиях априорной неопределенности о времени их излучения без предварительного определения значения порога принятия решения. Способ заключается в том, что принимают аналоговый PC, оцифровывают и формируют его спектральное представление. Причем при формировании спектрального представления оцифрованный PC предварительно делят на равные фрагменты, над которыми независимо друг от друга выполняют преобразование Фурье. А для расчета параметров спектрального представления компоненты преобразования Фурье каждого из фрагментов делят на две равные части и вычисляют сумму значений компонент каждой из частей. После чего вычисленные суммы частей сравнивают между собой. Решение о факте обнаружения PC принимают, если, по крайней мере, в одной из пар частей разница вычисленных сумм превысит предварительно заданное значение, которое выбирают в пределах (9-15%) от величины суммы значений компонент наибольшей из частей каждого из фрагмента. 2 з.п. ф-лы, 7 ил.

Изобретение относится к радиотехнике, а именно - к способам обнаружения радиосигналов в условиях априорной неопределенности о времени их излучения, и может быть использовано в системах радиоконтроля, работающих в условиях аддитивных шумов высокой интенсивности.

Известен способ обнаружения сигналов, реализованный в обнаружителях, описанных в книге Левина Б.Р. Теоретические основы статистической электротехники М: Сов. радио, 1968, с.345-346, рис.26. Способ основан на нелинейной обработке входной реализации z(t) и заключается в следующем. Входную реализацию раскладывают на квадратурные составляющие, которые затем фильтруют с помощью двух фильтров, согласованных с составляющими сигнала. Затем формируют суммы и разности входных значений в каждой группе фильтров, которые подвергают двухполупериодному квадратичному детектированию. Результаты детектирования суммируют и сравнивают с пороговым уровнем. Решение об обнаружении сигнала принимают в случае превышения суммы про детектированных величин порогового уровня.

Недостатком способа-аналога является то, что он приемлем только в случаях обнаружения сигналов с известными параметрами.

Известен способ обнаружения узкополосных сигналов, реализованный в обнаружителе сигналов по патенту RU 2110150 C1 6 H04B 1/10, G01S 7/292 от 23.01.97 г.

В известном способе принимают аналоговый сигнал z(t), оцифровывают его, для чего последовательно выполняют операции дискретизации, квантования и кодирования, затем рассчитывают параметры оцифрованного сигнала z i , для чего формируют цифрованный сигнал z i-1 , сдвинутый относительно z i на один такт, после этого вычисляют коэффициент корреляции K. Затем рассчитывают параметры оцифрованного сигнала S. После этого сравнивают рассчитанные параметры оцифрованного сигнала S с порогом принятия решения R пор , который вычисляют, используя дополнительную информацию о математическом ожидании обнаруживаемого сигнала Мс, дисперсии шума и величине порогового значения h. Затем принимают решение о факте обнаружения сигнала, если R пор
Недостатком известного способа является узкая область применения, так как его реализация возможна только при известных параметрах шума и обнаруживаемых сигналов.

Наиболее близким аналогом по технической сущности к заявленному является способ автоматического обнаружения узкополосных сигналов, описанный в патенте РФ 2382495 от 20.02.2010 г.

В ближайшем аналоге принимают аналоговый сигнал z(t), оцифровывают его, для чего последовательно выполняют операции дискретизации, квантования и кодирования. Затем рассчитывают параметры оцифрованного сигнала z i , для чего формируют его спектральное представление F j путем выполнения над ним преобразования Фурье. После этого рассчитывают пороговый уровень шума U путем вычисления удвоенного значения выборочного среднего компонент спектрального представления F j . Оценивают уровни каждой из спектральных компонент из последовательности спектрального представления F j путем их сравнения с вычисленным пороговым уровнем шума U. Затем формируют первую F1 j и вторую F2 j последовательности, соответственно из спектральных компонент F j , превысивших пороговый уровень шума U и не превысивших его, затем раздельно суммируют компоненты, входящие в первую F1 и вторую F2 последовательности, после чего вычисляют соотношение R, как отношение найденных сумм R= F1/ F2 и сравнивают с предварительно заданным пороговым значением R пор в интервале 0,13-0,15. Решение о факте обнаружения сигнала принимают при условии, что R>R пор .

Недостатком известного способа является относительно узкая область применения, так как он не позволяет достоверно обнаруживать одиночные сигналы в условиях априорной неопределенности о времени их излучения.

Целью заявленного технического решения является разработка способа, расширяющего область его применения для одиночных радиосигналов в условиях априорной неопределенности о времени их излучения в аддитивных шумах высокой интенсивности без предварительного определения значение параметра R пор .

Поставленная цель достигается тем, что в известном способе автоматического обнаружения сигналов принимают аналоговый сигнал z(t), оцифровывают его, для чего последовательно выполняют операции дискретизации, квантования и кодирования, формируют спектральное представление F j оцифрованного сигнала z i , затем рассчитывают параметры спектрального представления, оценивают их и по результатам оценки принимают решение о факте обнаружения сигнала. При формировании спектрального представления F j оцифрованный сигнал z i предварительно делят на N равных фрагментов, над которыми независимо друг от друга выполняют преобразование Фурье {F1 j ,F2 j , ,FN j }, а для расчета параметров спектрального представления S j компоненты преобразования Фурье каждого из N фрагментов делят на две равные части и вычисляют сумму значений компонент каждой из частей, после чего вычисленные суммы частей сравнивают между собой, причем решение о факте обнаружения сигнала принимают, если, по крайней мере, в одной из пар частей разница вычисленных сумм превысит предварительно заданное значение G. Значение G выбирают в пределах (9-15%) от величины суммы значений компонент наибольшей из частей каждого из фрагмента. Длительность фрагмента, на который разбивают принятый аналоговый сигнал, выбирают равным длительности обнаруживаемого сигнала.

Благодаря новой совокупности существенных признаков, заключающихся в предварительном разбиении принятого аналогового сигнала на фрагменты, равные длительности обнаруживаемого сигнала, над которыми независимо друг от друга выполняют преобразование Фурье, делении на две равные части и вычислении сумм значений спектральных компонент каждой из частей фрагмента, сравнении между собой значений вычисленных сумм, в заявленном способе обеспечивается обнаружение одиночных радиосигналов в условиях априорной неопределенности о времени их излучения без предварительного определения значения параметра R пор , что и указывает на расширение области применения заявленного способа и возможности его использования в системах радиоконтроля, работающих в условиях аддитивных шумов высокой интенсивности.

Заявленный способ поясняется чертежами, на которых показаны:

фиг.1. Выборка в 128 дискретных отсчета сигнала z i без шумов, значительно превышающая временной интервал существования полезного сигнала s i длительностью 16 отчетов (с 44 отсчета по 55);

фиг.2. Спектральное представление F j (64 спектральных отсчета) выборки сигнала z i без шумов длительностью 128 дискретных отсчета;

фиг.3. Спектральное представление F j (64 спектральных отсчета) выборки сигнала z i в шумах длительностью 128 дискретных отсчета, при отношении мощности полезного сигнала s i к мощности шума x i (ОСШ=1 дБ на длине обрабатываемой выборки z i ;

фиг.4. Спектральное представление F1 j фрагмента z1(t) на длительности существования полезного сигнала s(t) (16 дискретных отсчетов), полученное из выборки сигнала в шумах z(t)=s(t)+x(t) (128 отсчетов) при ОСШ=1 дБ;

фиг.5. Реализация принятого аналогового сигнала z(t) на длительности, соответствующей 128 дискретным отсчетам;

фиг.6. Выборка в 128 дискретных отчетов z i принятого аналогового сигнала z(t);

фиг.7. Спектральное представление F2 j фрагмента z2(t) на длительности существования полезного сигнала s(t) (16 дискретных отсчетов), полученное из выборки сигнала в шумах z(t)=x(t) (128 отсчетов) при ОСШ=1 дБ;

Существующая проблема автоматического обнаружения одиночных радиосигналов состоит в том, что при отсутствии априорных знаний о времени их излучения (значениях координат на оси времени), обработке подвергают выборки, значительно превышающие по длительности время существования обнаруживаемых полезных радиосигналов.

В условиях отсутствия шумов x(t) принять решение о наличии полезного сигнала s(t) в обрабатываемой выборке z(t) (z(t)=s(t)) не предоставляет трудностей. В качестве примера на фиг.1 представлена выборка дискретных отсчетов z i =s i , значительно превышающая временной интервал существования полезного сигнала s i . На фиг.2 изображено спектральное представление F j оцифрованного сигнала z i =s i . Поскольку форма и положение спектральных компонент F j на оси частот зависит только от длительности временного интервала существования полезного сигнала s(t) и не зависит от его расположения на оси времени, то в отсутствие шумов x(t) решение о наличии полезного сигнала s(t) в обрабатываемой выборке z(t) можно принимать по наличию доминирующих составляющих в правой части спектрального представления F j .

В условиях аддитивных шумов высокой интенсивности x(t) в обрабатываемой выборке z(t) (z(t)=s(t)+x(t)), значительно превышающей время существования полезного сигнала s(t), принятие решения о его наличии связано с существенными трудностями, поскольку в спектральном представлении F j выборки z(t) компоненты, соответствующие полезному сигналу s(t), не являются ярко выраженными на общем фоне спектрального представления F j . В качестве примера на фиг.3 изображено спектральное представление F j оцифрованного сигнала z i =s i +x i при ОСШ=1 дБ.

Если же указанным образом обрабатывать фрагмент z1(t) выборки z(t)=s(t)+x(t), длительность которого равна времени существования полезного сигнала s(t), то в спектральном представлении фрагмента F1 j мощность шума x(t) будут определять только те его дискретные отсчеты, которые лежат в пределах временных границ существования полезного сигнала s(t). А поскольку в общем случае длительность выборки z(t) значительно (в несколько раз) превышает длительность фрагмента z1(t), то и результирующее значение ОСШ в спектральном представлении фрагмента F1 j будет выше по отношению к спектральному представлению F j . Данный результат обусловлен тем, что спектральная плотность мощности шума равномерно распределена по всему частотному диапазону, в то время как у сигнала она сосредоточена в области его значимых частот. Следовательно, уменьшение длительности обрабатываемой выборки z(t), до величины фрагмента z1(t), в пределах которого существует полезный сигнал s(t), позволяет снизить спектральную плотность мощности шума в спектральном представлении фрагмента F1 j , и тем самым обеспечить контрастность спектральных составляющих полезного сигнала s(t) на фоне спектральных компонент шума x(t). В качестве примера на фиг.4 изображено спектральное представление F1 j фрагмента z1(t) на длительности существования полезного сигнала s(t), полученное из выборки z(t)=s(t)+x(t) при ОСШ=1 дБ.

Реализация заявленного способа объясняется следующим образом.

Принимают реализацию в виде аналогового сигнала z(t), например с тракта промежуточной или низкой частоты радиоприемного устройства. Операция приема аналоговых сигналов известна и описана, например, в способе обнаружения узкополосных сигналов по патенту RU 2110150 C1 6 H04B 1/10, G01S 7/292 от 23.01.97 г. На фиг.5 показана реализация принятого аналогового сигнала z(t).

Затем принятый аналоговый сигнал z(t) оцифровывают, для чего последовательно выполняют операции дискретизации, квантования, кодирования. Указанные операции известны и описаны, например, в способе автоматического обнаружения узкополосных сигналов по патенту РФ 2382495 от 20.02.2010 г. На фиг.6 показана выборка оцифрованных отсчетов z i принятого аналогового сигнала z(t).

После этого формируют спектральное представление F j оцифрованного сигнала z i , для чего оцифрованный сигнал z i предварительно делят на N фрагментов, каждый из которых берут равным длительности обнаруживаемого полезного сигнала s(t), и над каждым из фрагментов независимо друг от друга выполняют преобразование Фурье {F1 j ,F2 j , ,FN j }. Операции преобразования Фурье известны и описаны, например, в способе автоматического обнаружения узкополосных сигналов по патенту РФ 2382495 от 20.02.2010 г. На фиг.6 показан пример деления выборки сигнала z i на N фрагментов. Длительность каждого из фрагментов zn i , где n=1, , N, соответствует длительности существования обнаруживаемого сигнала s i .

Затем рассчитывают параметры спектрального представления S j каждого из N фрагментов оцифрованного сигнала z i . Для этого компоненты преобразования Фурье каждого из N фрагментов делят пополам на две части и вычисляют сумму значений компонент каждой из частей. На фиг.4 показан пример деления спектрального представления оцифрованного сигнала S j на две равные части. В результате каждый из N фрагментов будет иметь два параметра его спектрального представления 1 S j (состоит из спектральных компонент первой части) и 2 S j (состоит из спектральных компонент второй части), которые вычисляются согласно следующим выражениям:

где n=1 N - порядковый номер фрагмента, N - число фрагментов разбиения оцифрованного сигнала z i ; j=1 J - порядковый номер компоненты спектрального представления n-го фрагмента оцифрованного сигнала z i , J - число спектральных компонент, для процедур быстрого преобразования Фурье I/2, где I - количество временных отсчетов оцифрованного сигнала z i .

После чего независимо для каждого из N фрагментов {F1 j ,F2 j , ,FN j } оцифрованного сигнала z i вычисленные параметры спектрального представления 1 S j и 2 S j сравнивают между собой и принимают решение о наличии полезного сигнала s(t) в обрабатываемой выборке z(t), если разница между параметрами спектрального представления 1 S j и 2 S j хотя бы одного из N фрагментов {F1 j ,F2 j , ,FN j } превысит значение G.

Значение разницы параметров спектрального представления 1 S j и 2 S j , равное G, находится в диапазоне от (9-15%) и выше величины наибольшей из сумм значений компонент частей каждого из фрагментов. Величина диапазона значений G получена в ходе проведения эксперимента. Эксперимент проводился для спектральных представлений фрагментов сигналов длительностью 8 спектральных отсчета. При этом фрагмент z(t) длительностью 16 отсчетов выбирался из входного сигнала z(t) длительностью 128 отсчетов (длительность полезного сигнала s(t) 16 отсчетов) при ОСШ=1 дБ на длительности z(t). В качестве примера на фиг.7 показаны спектральные компоненты F2 j фрагмента z2 i , не содержащего обнаруживаемый сигнал s i . Для фрагмента F2 j оценка параметров спектрального представления 1 S2 j и 2 S2 j , рассчитанных в соответствии с формулой (1), показывает, что их разница не превышает значения G. Следовательно, фрагмент z2 i не содержит полезный обнаруживаемый сигнал s i . Эксперимент проводился в соответствии с требованиями получения статистических оценок [Г.Корн, Т.Корн. Справочник по математике. Пер. с англ. - М.: Наука, 1977, стр.638-643]. Если обрабатываемый фрагмент содержит только шум z1(t)=x(t), то в его спектральном представлении F1 j компоненты будут иметь примерно равные амплитудные значения. Это определяется спектральным свойством шума, согласно которому его спектральные компоненты распределяются на частотной оси по нормальному закону (см. фиг.4 и фиг.7).

Таким образом, благодаря новой совокупности существенных признаков в заявленном способе, заключающихся в различии свойств локализации спектральных компонент шума и полезного сигнала в выделенном фрагменте по отношению к принятой реализации, обеспечивается обнаружение одиночных радиосигналов в условиях априорной неопределенности о времени их излучения без предварительного определения значения параметра R пор , что и указывает на расширение области применения заявленного способа и возможности его использования в системах радиоконтроля, работающих в условиях аддитивных шумов высокой интенсивности.

Формула изобретения

1. Способ автоматического обнаружения сигналов, заключающийся в том, что принимают аналоговый сигнал z(t), оцифровывают его, для чего последовательно выполняют операции дискретизации, квантования и кодирования, формируют спектральное представление F j оцифрованного сигнала z i , затем рассчитывают параметры спектрального представления S j , оценивают их и по результатам оценки принимают решение о факте обнаружения сигнала, отличающийся тем, что при формировании спектрального представления F j оцифрованный сигнал z i предварительно делят на N равных фрагментов, над которыми независимо друг от друга выполняют преобразование Фурье {F1 j ,F2 j , ,FN j }, а для расчета параметров спектрального представления S j компоненты преобразования Фурье каждого из N фрагментов делят на две равные части и вычисляют сумму значений компонент каждой из частей, после чего вычисленные суммы частей сравнивают между собой, причем решение о факте обнаружения сигнала принимают, если, по крайней мере, в одной из пар частей разница вычисленных сумм превысит предварительно заданное значение G.

2. Способ по п.1, отличающийся тем, что значение G выбирают в пределах 9-15% от величины суммы значений компонент наибольшей из частей каждого из фрагмента.

3. Способ по п.1, отличающийся тем, что длительность фрагмента, на который разбивают принятый аналоговый сигнал, выбирают равную длительности обнаруживаемого сигнала.

РИСУНКИ