Forbidden

You don't have permission to access /zzz_siteguard.php on this server.

СПОСОБ ОБНАРУЖЕНИЯ ЗАРАЖЕННОСТИ РАЗЛИЧНЫХ ПОВЕРХНОСТЕЙ ТОКСИЧНЫМИ ХИМИКАТАМИ ПАССИВНЫМИ ИНФРАКРАСНЫМИ СПЕКТРОМЕТРАМИ ДИСТАНЦИОННОГО ДЕЙСТВИЯ
Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2474811

(19)

RU

(11)

2474811

(13)

C1

(51) МПК G01N21/35 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 07.02.2013 - нет данных Пошлина:

(21), (22) Заявка: 2011140007/28, 30.09.2011

(24) Дата начала отсчета срока действия патента:

30.09.2011

Приоритет(ы):

(22) Дата подачи заявки: 30.09.2011

(45) Опубликовано: 10.02.2013

(56) Список документов, цитированных в отчете о

поиске: Морозов А.Н. Основы Фурье-спектрорадиометрии. - М.: Наука, 2006, с.147-156. RU 2313779 С2, 27.12.2007. RU 98123323 А, 27.09.2000. RU 2342648 С1, 27.12.2008. RU 46858 U1, 27.07.2005. WO 93/19357 А1, 30.09.1993. US 6477907 В1, 12.11.2002. JP 2004251690 А, 09.09.2004.

Адрес для переписки:

156011, г.Кострома, ул. Магистральная, 41а, кв.69, И.Г. Васюкевичу

(72) Автор(ы):

Васюкевич Игорь Геннадьевич (RU),

Бобров Руслан Сергеевич (RU),

Карташов Александр Константинович (RU),

Климов Сергей Николаевич (RU),

Мацюк Григорий Владимирович (RU)

(73) Патентообладатель(и):

Васюкевич Игорь Геннадьевич (RU)

(54) СПОСОБ ОБНАРУЖЕНИЯ ЗАРАЖЕННОСТИ РАЗЛИЧНЫХ ПОВЕРХНОСТЕЙ ТОКСИЧНЫМИ ХИМИКАТАМИ ПАССИВНЫМИ ИНФРАКРАСНЫМИ СПЕКТРОМЕТРАМИ ДИСТАНЦИОННОГО ДЕЙСТВИЯ

(57) Реферат:

Изобретение относится к оптическим методам измерения физико-химических характеристик газовых сред. Проводится регистрация в ИК-диапазоне спектров поглощения паров токсичных веществ и их идентификация по максимальному коэффициенту корреляции спектра сигнала с образцовыми спектрами базы данных. Сканирование сигнала осуществляют в оптической насадке, проводящей разогрев индицируемой поверхности, возгонку сорбированного вещества и его концентрацию в узком оптическом тракте, а также дающей большой температурный контраст на трассе наблюдения индицируемого вещества для повышения чувствительности метода обнаружения. Наличие теплового контраста позволяет повысить чувствительность дистанционных приборов химической разведки пассивного типа. 4 ил., 3 табл.

Изобретение относится к оптическим методам измерения физико-химических характеристик газовых сред. Техническим результатом является разработка способа обнаружения зараженности различных поверхностей токсичными химикатами (ТХ) пассивными инфракрасными (ИК) спектрометрами дистанционного действия с применением оптической насадки.

В современных условиях идет интенсивное развитие дистанционных средств контроля зараженности парами ТХ атмосферы на основе пассивных инфракрасных спектрометров (М21, JSLSCAD, RAPID, ПХРДД-1(2, 3) и другие). Но вопросы индикации зараженности ТХ различных поверхностей являются до настоящего времени недостаточно решенными.

Для определения зараженности поверхности ТХ используются различные подходы. В одних предполагается отбор пробы с последующим ее анализом в стационарной аналитической лаборатории, в других проводится использование технических устройств для анализа атмосферы по вторичным парам ТХ над зараженной поверхностью с помощью индикаторных трубок или газоанализаторов, работающих на методе спектрометрии ионной подвижности. В случае обнаружения на поверхности подозрительных жидких капель возможно применение для их индикации индикаторных бумажек или элементов. Однако эти подходы обладают рядом существенных недостатков: длительностью времени в проведении анализа, низкой специфичностью, низкой производительностью, потребностью в расходных материалах и так далее.

Одним из наиболее эффективных методов контроля зараженности ТХ различных поверхностей является применение бортового мобильного масс-спектрометра ММ-1 фирмы Брюкер [1]. Прибор предназначен для определения паров ТХ в воздухе и на различных поверхностях в жидкой фазе. Унифицированная изолированная система отбора проб обеспечивает проведение анализа как на месте, так и в движении. Система полностью управляется бортовым компьютером, база данных содержит информацию о 150 соединениях. Чувствительность определения находится на уровне 10 мг/м 2 по поверхностному заражению. Однако и этот метод имеет свои недостатки, связанные со сложностью пробоотбора, невозможностью проведения анализа с впитавшей капли ТХ поверхности, длительностью анализа.

В настоящее время как у нас в стране, так и за рубежом наиболее перспективным дистанционным методом контроля загрязнений атмосферы ТХ является пассивная ИК-спектрометрия. Классическое их предназначение - обнаружение паров ТХ в атмосфере [2].

Следует отметить, что физические принципы, заложенные в основу принципа действия пассивных ИК-спектрометров, алгоритмы регистрации и обработки спектральной информации ориентированы на работу в условиях приземных наклонных трасс и незначительных температурных контрастов.

Как видно из (см. фиг.1), спектральная мощность энергетической яркости излучения, регистрируемого прибором В вх ( , , Т), состоит из трех компонентов:

- яркость фонового излучения атмосферы В ф ( , , Т ф ), где - угол места локации, ослабленного, согласно закону Бугера-Ламберта, в облаке со спектральным пропусканием ( ) и на атмосферной трассе наблюдения с пропусканием а ( );

- излучение облака, равное, по закону Кирхгофа, B AЧT ( , T a )(1- ( )), ослабленное на той же трассе;

- собственное излучение трассы В АЧТ ( , Т а )(1- а ( )).

То есть

B вх ( , , T)=В ф ( , , Т ф ) ( ) a ( )+В АЧТ ( , Т а )(1- ( )) a ( )+В АЧТ ( , Т а )(1- а ( ))

Это определяет способность таких приборов регистрировать и идентифицировать загрязняющие приземную атмосферу вещества, находящиеся в парогазовом состоянии.

Наиболее близким по технической сущности к заявляемому способу является способ, реализованный в Фурье-спектрометре с охлаждаемым ИК-приемным каналом и разработанный под руководством А.Н.Морозова авторским коллективом ЦПФ МГТУ им. Н.Э.Баумана в 2004 под названием ПХРДД-2 [2]. Прибор обладает большой светосилой, позволяет одновременно регистрировать протяженные участки оптического спектра за короткое время и обеспечивает возможность ведения одновременной индикации достаточно широкого перечня токсичных веществ и определения смесей веществ с оценкой концентрации каждого компонента в паровой фазе на значительных расстояниях при наличии малых тепловых контрастов (около 2°С).

Быстродействие прибора не более 1 с обеспечивает своевременное обнаружение объектов индикации.

Чувствительность прибора, в главной степени, зависит от чувствительности ИК-приемной системы и составляет для паров ТХ при интегральной плотности паров в облаке не менее 50 мг/м 2 . На чувствительность системы также будут оказывать влияние степень заполнения облаком паров индицируемого вещества поля зрения, концентрация паров, уровень теплового контраста.

В 2009 году ими же разработан прибор ПХРДД-3 с неохлаждаемым ИК-приеником. Данный прибор является аналогом ПХРДД-2 с уменьшенными массой, габаритными размерами и энергопотреблением, что позволило образец сделать в носимом варианте.

Нами разработан способ обнаружения зараженных поверхностей ТХ на основе применения насадки и прибора ПХРДД-2(3), наряду с решением их традиционных задач.

Насадка представляет собой фиксированную в ИК-канале прибора трубку с раструбом (см. фиг.2) и нагревательным элементом на конце трубки (см. фиг.3).

Наличие трубки позволяет концентрировать возгоняемое вещество в узком объеме поля зрения прибора. Диаметр трубки определяется диаметром поля зрения прибора, а длина трубки - удобством эксплуатации устройства. Раструб на конце трубки позволяет с большей площади поверхности проводить возгонку вещества и концентрировать его в трубке, изолировать от окружающей атмосферы возгоняемые пары, а также избегать возможности прямого контакта нагревательного элемента с анализируемой поверхностью.

Нагревательный элемент может нагреваться до температур, при которых не происходит разложение анализируемого вещества. В нашем случае он нагревался до температуры около 150°С напряжением 12 В, не касаясь поверхности на расстоянии 3-5 мм. Нагревательный элемент выполняет две функции:

- разогревает индицируемую поверхность и таким образом возгоняет сорбированное вещество;

- служит большим температурным контрастом для возможности обнаружения на трассе наблюдения индицируемого вещества.

Наличие такого теплового контраста позволяет значительно повысить чувствительность дистанционных приборов химической разведки пассивного типа в сравнении с чувствительностью прибора при работе с использованием естественного теплового контраста.

Для апробирования способа нами была разработана экспериментальная установка (см. фиг.4), представляющая собой прибор ПХРДД-2, соединенный и съюстированный с оптической насадкой.

Экспериментальную оценку способа мы проводили на различных поверхностях: песчаный грунт, деревянная поверхность (фанера), обмундирование. Эксперимент проводили с использованием веществ, имеющихся в базе данных прибора ПХРДД-2: ацетон, этанол, изопропанол. База данных может пополняться.

На индицируемую поверхность наносились с помощью медицинского шприца три капли индицируемого вещества весом около 20 мг на площадь 20 см 2 . Выдерживалось около 5 мин и проводилось зондирование зараженной поверхности с помощью прибора ПХРДД-2. Для соблюдения условий юстировки прибор и раструб находились в фиксированном положении в штативах, а индицируемая поверхность подводилась к раструбу с нагревательным элементом.

Результаты экспериментов представлены в таблицах 1-3.

Таблица 1

Обмундирование

Вещество

Плотность концентрации, мг/м 2

Коэффициент корреляции

Среднеквадратическое отклонение

Этанол

3766

0,85

±181

3400

3540

3369

Изопропанол

1388

0,88

±65

1429

1539

1475

Ацетон

1171

0,90

±62

1313

1240

1195

Таблица 2

Дерево

Вещество

Плотность концентрации, мг/м 2

Коэффициент корреляции

Среднеквадратическое отклонение

Этанол

2188

0,85

±312

2859

2831

2569

Изопропанол

440

0,88

±58

564

444

477

Ацетон

1135

0,90

±72

1129

1285

1194

Таблица 3

Песчаный грунт

Вещество

Плотность концентрации, мг/м 2

Коэффициент корреляции

Среднеквадратическое отклонение

Этанол

2336

0,86

±142

2647

2452

2357

Изопропанол

889

0,88

±92

869

689

773

Ацетон

2762

0,89

±533

3929

3387

2854

Литература

1. Сивцов Г.А., Кауров Н.Е., Политов Ю.Н., Таранченко В.Ф., Цехмистер В.И. Система технических средств химической разведки и химического контроля армий стран НАТО. - М.: ВУРХБЗ, 2003, 120 с.

2. Морозов А.Н. Основы фурье-спектрорадиометрии / Под ред. Васильева Г.К. - М.: Наука, 2006, 275 с.

Формула изобретения

Способ обнаружения зараженности различных поверхностей токсичными химикатами пассивными инфракрасными спектрометрами дистанционного действия с применением оптической насадки, заключающийся в регистрации в ИК диапазоне спектров поглощения паров токсичных веществ, их идентификацию по максимальному коэффициенту корреляции спектра сигнала с образцовыми спектрами базы данных, отличающийся тем, что с помощью нагревательного элемента, служащего большим температурным контрастом и размещенного на конце трубки оптической насадки, проводят возгонку сорбированного вещества и его концентрирование в узком оптическом тракте, а затем осуществляют сканирование сигнала.

РИСУНКИ