Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2474919

(19)

RU

(11)

2474919

(13)

C1

(51) МПК H01L21/8238 (2006.01)

B82B3/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 07.02.2013 - нет данных Пошлина:

(21), (22) Заявка: 2011130940/28, 25.07.2011

(24) Дата начала отсчета срока действия патента:

25.07.2011

Приоритет(ы):

(22) Дата подачи заявки: 25.07.2011

(45) Опубликовано: 10.02.2013

(56) Список документов, цитированных в отчете о

поиске: US 7358574 В2, 15.04.2008. SU 1389603 А1, 07.03.1993. RU 2217844 С2, 27.11.2003. US 6569766 В1, 27.05.2003. US 6110818 А, 29.08.2000. US 5365111 А, 15.11.1994.

Адрес для переписки:

129081, Москва, а/я 51, Л.М.Березкиной

(72) Автор(ы):

Бабкин Сергей Иванович (RU),

Демин Сергей Васильевич (RU),

Цимбалов Андрей Сергеевич (RU)

(73) Патентообладатель(и):

Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации (Минобороны России) (RU),

Учреждение Российской академии наук Научно-исследовательский институт системных исследований РАН (НИИСИ РАН) (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ ЛОКАЛЬНЫХ НИЗКООМНЫХ ОБЛАСТЕЙ СИЛИЦИДА ТИТАНА В ИНТЕГРАЛЬНЫХ СХЕМАХ

(57) Реферат:

Изобретение относится к технологии изготовления интегральных схем на основе комплементарных транзисторов со структурой металл - окисел - полупроводник (КМОП ИС). Изобретение обеспечивает сохранение электрофизических и конструктивных параметров активных и пассивных элементов в интегральных схемах на основе комплементарных транзисторов со структурой металл - окисел - полупроводник при формировании силицида титана. Сущность изобретения: способ получения локальных низкоомных областей силицида титана в интегральных схемах заключается в формировании активных и пассивных элементов КМОП ИС на основе областей n и р типа проводимости в кремниевой подложке и слое поликристаллического кремния, осаждении блокирующего слоя, формировании фоторезистивной маски, травлении блокирующего слоя, удалении фоторезистивной маски, очистке поверхности кремния, нанесении слоя титана на поверхность кремния и блокирующего слоя, отжиге слоя титана в азоте, удалении не прореагировавшего с кремнием титана и дополнительно отжиге в азоте. В качестве блокирующего слоя используют пленку нитрида титана толщиной 5-20 нм, полученную путем физического распыления титановой мишени в атмосфере азота, а блокирующий слой удаляют в процессе удаления не прореагировавшего с кремнием титана. 5 ил., 1 табл.

Изобретение относится к технологии изготовления интегральных схем на основе комплементарных транзисторов со структурой металл - окисел - полупроводник (КМОП ИС), с использованием слоев силицида титана.

Наиболее близким по технической сути и достигаемому техническому результату является известный способ получения локальных низкоомных областей силицида титана в интегральных схемах, заключающийся в формировании активных и пассивных элементов интегральных схем на основе комплементарных транзисторов со структурой металл - окисел - полупроводник (КМОП ИС) и областей n и р типа проводимости в кремниевой подложке и слое поликристаллического кремния, осаждении блокирующего слоя, формировании фоторезистивной маски, плазмохимического селективного травления блокирующего слоя, удалении фоторезистивной маски, очистке поверхности кремния, нанесении слоя титана на поверхность кремния и блокирующего слоя, отжиге слоя титана в азоте, удалении не прореагировавшего с кремнием титана и дополнительном отжиге в азоте (Патент US 7358574, кл. Н01L 31/00, опубл. в 2008 г.).

Описанный выше способ получения локальных низкоомных областей силицида титана в интегральных схемах имеет ряд недостатков:

- При использовании в качестве блокирующего слоя пленки диоксида кремния SiO 2 толщиной 100-200 нм при анизотропном селективном травлении до поверхности кремния на последней происходит высаживание полимера, который препятствует образованию силицида, что требует дополнительной химической обработки.

- При анизотропном травлении диоксида кремния SiO 2 , нитрида кремния Si 3 N 4 происходит дополнительное увеличение толщины спейсера SP, что приводит к сокращению поверхности образования силицида в областях исток-стока структуры металл - окисел - полупроводник (МОП) транзисторов и, как следствие, к увеличению последовательного сопротивления исток-стока, что ухудшает вольтамперную характеристику транзисторов на основе структуры металл - окисел - полупроводник (ВАХ МОП).

- Локально оставшийся нитрид кремния Si 3 N 4 может затруднить формирование дополнительных структур на высокоомных областях (например, диодов Шоттки, варакторов на основе структуры металл - окисел - полупроводник) МОП варакторов и т.п.

- При высокотемпературном отжиге пленки титана в азоте титан взаимодействует с кремнием блокирующего слоя с образованием силицида титана, который может частично оставаться на поверхности блокирующего слоя даже после обработки в перекисно-аммиачном растворе. Это приводит к появлению токов утечки по поверхности и, как следствие, шунтированию (снижению сопротивления) высокоомных резисторов.

Ожидаемый технический результат от использования данного изобретения состоит в сохранении электрофизических и конструктивных параметров активных и пассивных элементов в интегральных схемах на основе комплементарных транзисторов со структурой металл - окисел - полупроводник (КМОП ИС) при формировании силицида титана за счет устранения вышеперечисленных недостатков.

Указанный технический результат достигается тем, что в способе получения локальных низкоомных областей силицида титана в интегральных схемах, заключающемся в формировании активных и пассивных элементов КМОП ИС на основе областей n и р типа проводимости в кремниевой подложке и слое поликристаллического кремния, осаждении блокирующего слоя, формировании фоторезистивной маски, плазмохимическом селективном травлении блокирующего слоя, удалении фоторезистивной маски, очистке поверхности кремния, нанесении слоя титана на поверхность кремния и блокирующего слоя, отжиге слоя титана в азоте, удалении не прореагировавшего с кремнием титана и дополнительном отжиге в азоте, в качестве блокирующего слоя используют пленку нитрида титана толщиной 5-20 нм, полученную путем физического распыления титановой мишени в атмосфере азота, а блокирующий слой удаляют в процессе удаления не прореагировавшего с кремнием титана.

Изобретение поясняется чертежами, где:

На фиг.1 представлен этап нанесения блокирующего слоя нитрида.

На фиг.2 - этап нанесения фоторезистивной маски.

На фиг.3 - этап локализации слоя нитрида титана в местах, необходимых для предотвращения образования силицида.

На фиг.4 - этап образования силицида титана высокоомной фазы в кремниевой подложке и слое поликристаллического кремния и нитрида титана на поверхности титановой пленки.

На фиг.5 - этап удаления с поверхности структуры не прореагировавшего с кремнием слоя титана и нитрида титана с поверхности титановой пленки.

Способ получения локальных низкоомных областей силицида титана в интегральных схемах осуществляется следующим образом.

На поверхности структуры 1 методом физического осаждения (обычно метод реактивного магнетронного распыления титановой мишени в атмосфере азота) наносится слой нитрида титана 2 толщиной 5-20 нм, обычно 10 нм (фиг.1).

Методами фотолитографии на слое нитрида титана 2 формируется фоторезистивная маска 3 (фиг.2).

Используя процесс анизотропного селективного плазмохимического травления нитрида титана по отношению к диоксиду кремния SiO 2 (обычно содержащих газовую смесь CL 2 +N 2 ), слой нитрида титана 2 локализуется в местах, необходимых для предотвращения образования силицида (фиг.3).

После очистки поверхности монокристаллического и поликристаллического кремния на поверхность структуры наносится слой титана, который затем отжигается в атмосфере азота при Т=685°C с образованием силицида титана высокоомной фазы 4 в монокристаллическом и поликристаллическом кремнии и нитрида титана 5 на поверхности титановой пленки (фиг.4).

Не прореагировавший с кремнием слой титана и нитрид титана на поверхности пленки титана 5 и нитрид титана блокирующего слоя 2 удаляется с поверхности структуры в аммиачно-перекисном растворе при температуре Т=65°C (фиг.5).

Высокоомная фаза силицида титана переводится в низкоомную в результате дополнительного высокотемпературного отжига в инертной атмосфере при температуре Т=850°C.

Реализованная таким образом структура, представленная на фиг.5, характеризуется отсутствием блокирующего слоя 2 и более протяженным слоем низкоомного силицида титана 4, шунтирующего области исток-стока МОП транзистора.

В таблице 1 представлены параметры тестовых структур, сформированных с использованием описанного метода и различных значений толщин пленок нитрида титана в качестве блокирующего слоя. В качестве критериев рассматриваются:

Ток насыщения МОП транзистора - Iнас.

Поверхностное сопротивление поликремниевой шины затвора, шунтированное силицидом титана- Rs затвора.

Поверхностное сопротивление резистора, сформированного на основе поликремниевой шины, закрытой блокирующим слоем нитрида титана при формировании силицида титана - Rs резистор поли.

Поверхностное сопротивление области исток-стока МОП транзистора, шунтированное силицидом титана Rs стока.

Поверхностное сопротивление резистора на основе области исток-стока МОП транзистора, закрытое блокирующим слоем нитрида титана при формировании силицида титана - Rs резистор стока.

Таблица 1

варианта

Толщина слоя TiN, нм

Параметры тестовых структур

Iнас, мкА/мкм

Rs затвора, м/кв

Rs резистор поли, Ом/кв

Rs стока, Ом/кв

Rs резистор стока, Ом/кв

1

4,5

530

5,2

100

3,1

100

2

5,0

532

5,0

145

3,2

131

3

10

535

5,1

150

3,0

130

4

20

531

5,2

152

3,1

132

5

20,5

530

5,9

151

4,0

130

При значениях толщин TiN меньше 5,0 нм титан при отжиге частично взаимодействует с кремнием с образованием силицида, что приводит к уменьшению сопротивления высокоомных резисторов Rs резистор поли и Rs резистор стока.

При значениях толщин TiN больше 20,0 нм необходимо большее время для его удаления, что приводит к частичному травлению силицида, сформированного на поверхности поли- и монокремния. Как следствие, это приводит к возрастанию сопротивления областей Rs затвора и Rs стока.

Ток насыщения МОП транзистора практически не меняется во всем диапазоне рассматриваемых толщин TiN.

Таким образом, с точки зрения сохранения электрофизических параметров активных и пассивных элементов КМОП оптимальным является толщина пленки TiN в диапазоне 5-20 нм.

Формула изобретения

Способ получения локальных низкоомных областей силицида титана в интегральных схемах, заключающийся в формировании активных и пассивных элементов интегральных схем на основе комплементарных транзисторов со структурой метал - окисел - полупроводник (КМОП ИС) и областей n и p типа проводимости в кремниевой подложке и слое поликристаллического кремния, осаждении блокирующего слоя, формировании фоторезистивной маски, плазмохимическом селективном травлении блокирующего слоя, удалении фоторезистивной маски, очистке поверхности кремния, нанесении слоя титана на поверхность кремния и блокирующего слоя, отжиге слоя титана в азоте, удалении непрореагировавшего с кремнием титана и дополнительном отжиге в азоте, отличающийся тем, что в качестве блокирующего слоя используют пленку нитрида титана толщиной 5-20 нм, полученную методом физического распыления титановой мишени в атмосфере азота, а блокирующий слой удаляют в процессе удаления непрореагировавшего с кремнием титана.

РИСУНКИ