Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2474924

(19)

RU

(11)

2474924

(13)

C1

(51) МПК H01L29/737 (2006.01)

B82B1/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 07.02.2013 - нет данных Пошлина:

(21), (22) Заявка: 2011132972/28, 08.08.2011

(24) Дата начала отсчета срока действия патента:

08.08.2011

Приоритет(ы):

(22) Дата подачи заявки: 08.08.2011

(45) Опубликовано: 10.02.2013

(56) Список документов, цитированных в отчете о

поиске: RU 2396655 С1, 10.08.2010. WO 99/14809 А1, 25.03.1999. US 6697412 В2, 24.02.2004. GB 2358959 А, 08.08.2001. TW 494577 В, 11.07.2002.

Адрес для переписки:

117105, Москва, Нагорный пр-д, 7, стр.5, УРАН Институт сверхвысокочастотной полупроводниковой электроники РАН

(72) Автор(ы):

Галиев Галиб Бариевич (RU),

Васильевский Иван Сергеевич (RU),

Климов Евгений Александрович (RU),

Пушкарёв Сергей Сергеевич (RU),

Рубан Олег Альбертович (RU)

(73) Патентообладатель(и):

Учреждение Российской академии наук Институт сверхвысокочастотной полупроводниковой электроники РАН (ИСВЧПЭ РАН) (RU)

(54) ПОЛУПРОВОДНИКОВАЯ НАНОГЕТЕРОСТРУКТУРА InAlAs/InGaAs С МЕТАМОРФНЫМ БУФЕРОМ

(57) Реферат:

Изобретение относится к полупроводниковым наногетероструктурам, используемым для изготовления СВЧ транзисторов и монолитных интегральных схем с высокой рабочей частотой и большими пробивными напряжениями. Техническим результатом изобретения является уменьшение плотности дислокаций, проникающих в активную область наногетероструктуры. Сущность изобретения: в полупроводниковой метаморфной наногетероструктуре InAlAs/InGaAs, включающей монокристаллическую полуизолирующую подложку GaAs, сверхрешетку AlGaAs/GaAs, буферный слой GaAs, метаморфный буфер In x Al 1-x As толщиной 1.0÷1.5 мкм с линейным увеличением содержания InAs х по толщине от x 1 до х 4 , где x 1 ~0, х 4 0.75, инверсный слой In x Al 1-x As с плавным уменьшением содержания InAs х по толщине от х 4 до х 4' , где х 4 -х 4' =0.03÷0.08, залечивающий слой с однородным составом In x4' Al 1-x4' As, активную область InAlAs/InGaAs с высоким содержанием InAs (более 70%), согласованную по параметру решетки с залечивающим слоем, внутрь метаморфного буфера на равных расстояниях друг от друга и от границ буфера вводятся два инверсных слоя с плавным уменьшением содержания InAs х по толщине на х=0.03÷0.06, за каждым из которых следует залечивающий слой с составом, совпадающим с финальным составом инверсного слоя. 3 ил.

Область техники

Предлагаемое изобретение относится к полупроводниковым МНЕМТ (metamorphic high electron mobility transistor) наногетероструктурам, используемым для изготовления СВЧ транзисторов и монолитных интегральных схем с высокой рабочей частотой и большими пробивными напряжениями.

Уровень техники

В настоящее время на псевдоморфных НЕМТ (pseudomorphic high electron mobility transistor, PHEMT) наногетероструктурах InAlAs/InGaAs с высоким содержанием InAs (от 50% до 70%, а в отдельных слоях более 70%), выращенных методом молекулярно-лучевой эпитаксии на подложках InP, получены самые быстродействующие СВЧ транзисторы с рекордно высокими значениями f T =644 ГГц и f max =681 ГГц [1]. Увеличение быстродействия СВЧ транзисторов на таких наногетероструктурах обусловлено уменьшением эффективной массы электронов при увеличении содержания InAs в активной области PHEMT структур и соответствующим увеличением подвижности µ е и дрейфовой скорости насыщения электронов. Но относительно высокая стоимость подложек InP по сравнению с GaAs и их меньшая технологичность, в основном вызванная хрупкостью, привели к поиску альтернативных методов получения наногетероструктур с высоким (более 70%) содержанием InAs в активной области на основе использования подложек GaAs.

Самым удачным и приемлемым оказался метод использования так называемого метаморфного буфера In x Al 1-x As. Выращенные с применением этого метода наногетероструктуры называются МНЕМТ (metamorphic high electron mobility transistor) структуры. Суть метода заключается в выращивании между подложкой и активной областью относительно толстого (обычно 1-2 мкм) переходного слоя (метаморфного буфера) с постепенно изменяющимся по толщине химическим составом (а именно: содержание InAs x в тройном твердом растворе In x Al 1-x As увеличивается по мере роста метаморфного буфера), а следовательно, и параметром решетки. Таким образом, метаморфный буфер согласует параметр решетки подложки с параметром решетки активной области. Метаморфная технология позволяет получить «виртуальную» подложку с требуемым параметром решетки, непосредственно на которой уже выращиваются активные слои требуемого состава.

Рост идеального метаморфного буфера должен сопровождаться постепенной релаксацией механических напряжений, неизбежно возникающих из-за несоответствия параметров решетки нижележащего и вышележащего слоев. Однако, как показала практика, метаморфный буфер релаксирует не полностью и в его верхней части остаются механические напряжения, оказывающие воздействие на растущие выше активные слои. Для избежания этого метаморфный буфер завершают так называемым инверсным слоем, когда после достижения максимального содержания InAs в тройном твердом растворе In x Al 1-x As на вершине метаморфного буфера содержание InAs снижается либо плавно, либо скачком. Описанный технологический прием позволяет ликвидировать механические напряжения к концу инверсного слоя и получить ненапряженную «виртуальную» подложку для последующего роста активных слоев. При этом механические напряжения, остающиеся в верхней части метаморфного буфера, не могут передаваться в вышележащие слои и релаксировать с образованием дислокации.

Известны гетероструктуры с метаморфным буфером с высоким содержанием InAs в активной области, в частности, наногетероструктура на подложке GaAs для FET транзисторов [2]. Наногетероструктура последовательно включает в себя обычный буферный слой из GaAs, метаморфный буфер сложного состава Al x Ga 1-x As 1-y Sb y и активную область, которая может состоять из In x Al 1-x As, In x Ga 1-x As либо InAs x P 1-x . При этом с толщиной метаморфного буфера значение у меняется от 0 до 1, а х 0.5. Недостатком этой наногетероструктуры является необходимость использования дополнительного молекулярного источника Sb помимо традиционных источников Al, Ga, In. Кроме того, не предприняты меры по уменьшению механических напряжений и плотности дислокации во время роста метаморфного буфера.

Наиболее близкой к предлагаемой наногетероструктуре и принятой в качестве прототипа настоящего изобретения является наногетероструктура, описанная в работе [3], (фиг.1). Данная наногетероструктура включает монокристаллическую полуизолирующую подложку GaAs (1), сверхрешетку AlGaAs/GaAs (2), буферный слой GaAs (3), ступенчатый (step-graded) метаморфный буфер (4) In x Al 1-x As с увеличением содержания InAs x по толщине (x=x 1 x 4 , где x 1 =0.15, а x 4 =0.80) с двумя разными градиентами изменения содержания InAs, завершающийся инверсным слоем (5) с резким падением содержания InAs x на x=0.08, залечивающий слой с однородным составом In x4' Al 1-x4' As (6), и активную область (7) с высоким содержанием InAs (72%), согласованную по параметру решетки с залечивающим слоем.

Активная область (7) представляет собой квантовую яму InGaAs, ограниченную барьерами InAlAs, в которой формируется двумерный электронный газ. Сверхрешетка (2) здесь традиционная и широко применяемая в гетероструктурах, ее роль заключается в предотвращении сегрегации фоновых примесей из подложки в последующие эпитаксиальные слои.

Недостатком описанной структуры является возникновение дислокаций, образующихся при релаксации областей сжатия в метаморфном буфере. Всегда возникают дислокации несоответствия (misfit dislocations), которые распространяются параллельно плоскости роста и выходят на боковые грани наногетероструктуры. Но также возникают прорастающие дислокации (threading dislocations), которые образуются в результате изгибания дислокаций несоответствия, если какой-либо дефект блокирует их скольжение параллельно плоскости роста, и распространяются перпендикулярно плоскости роста в вышележащие слои, доходя до активной области наногетероструктуры. По этой причине возникновение прорастающих дислокаций сильно увеличивает рассеяние электронов в канале и, следовательно, ухудшает приборные параметры. Скольжение дислокаций может быть блокировано областями фазового расслоения, которое происходит особенно активно в метаморфном буфере In x Al 1-x As с большим перепадом состава и большим финальным значением x [4]. В связи с этим возникает необходимость разработки особой технологии роста метаморфного буфера для наногетероструктур InAlAs/InGaAs на подложке GaAs с высоким содержанием InAs в активной области (более 70%).

Раскрытие изобретения

Задачей настоящего изобретения является увеличение рабочей частоты СВЧ транзисторов, изготовленных на основе наногетероструктур с высоким содержанием InAs в активной области, выращенных на подложках GaAs. Техническим результатом, позволяющим выполнить поставленную задачу, является уменьшение плотности дислокаций, проникающих в активную область наногетероструктуры.

Согласно изобретению, этот технический результат достигается за счет того, что в полупроводниковой метаморфной наногетероструктуре InAlAs/InGaAs (фиг.2), включающей монокристаллическую полуизолирующую подложку GaAs (1), сверхрешетку AlGaAs/GaAs (2), буферный слой GaAs (3), метаморфный буфер In x Al 1-x As (4) толщиной 1.0-1.5 мкм с линейным увеличением содержания InAs x по толщине от x 1 до x 4 , где x 1 ~0, x 4 0.75, инверсный слой In x Al 1-x As (5) с плавным уменьшением содержания InAs x по толщине от x 4 до x 4' , где x 4 -x 4' =0.03÷0.08, залечивающий слой с однородным составом In x4' Al 1-x4' As (6), активную область InAlAs/InGaAs (7) с высоким содержанием InAs (более 70%), согласованную по параметру решетки с залечивающим слоем, внутрь метаморфного буфера (4) на равных расстояниях друг от друга и от границ буфера вводятся два инверсных слоя (9 и 12) с плавным уменьшением содержания InAs x по толщине на х=0.03÷0.06, за каждым из которых следует залечивающий слой (10 и 13) с составом, совпадающим с финальным составом инверсного слоя.

Краткое описание чертежей

На фиг.1 представлена схема поперечного сечения полупроводниковой метаморфной наногетероструктуры, выбранной в качестве прототипа настоящего изобретения. Указаны следующие друг за другом слои и их состав.

На фиг.2 представлена схема поперечного сечения полупроводниковой метаморфной наногетероструктуры, демонстрирующая суть настоящего изобретения. Указаны следующие друг за другом слои и их состав.

Фиг.3 поясняет принцип изменения состава метаморфного буфера, предлагаемого в настоящем изобретении.

Осуществление изобретения

Полупроводниковая наногетероструктура с метаморфным буфером состоит из монокристаллической полуизолирующей подложки GaAs (1), сверхрешетки AlGaAs/GaAs (2), служащей для предотвращения сегрегации фоновых примесей из подложки в последующие эпитаксиальные слои, буферного слоя GaAs (3), метаморфного буфера (4) In x Al 1-x As с линейным увеличением содержания InAs x по толщине от x 1 до x 4 , где x 1 ~0, x 4 0.75, инверсного слоя (5) с плавным уменьшением содержания InAs x по толщине от х 4 до x 4' , где x 4 -x 4' =0.03÷0.08, служащего для ликвидации накопившихся к концу метаморфного буфера механических напряжений, залечивающего слоя (6) с однородным составом In x4' Al 1-x4' As, служащего для уменьшения остаточных механических напряжений и для сглаживания рельефа поверхности, и активной области (7) с высоким содержанием InAs (более 70%), согласованной по параметру решетки с залечивающим слоем. Активная область представляет собой квантовую яму InGaAs, ограниченную барьерами InAlAs, в которой формируется двумерный электронный газ. В одном из барьеров располагается дельта-слой атомов Si, являющихся донорами.

Внутрь метаморфного буфера (4) введены два дополнительных инверсных слоя (9 и 12), расположенных на равных расстояниях друг от друга и от границ метаморфного буфера. Инверсные слои состоят из In x Al 1-x As, в котором x плавно уменьшается по толщине от x 2 до x 2' , где x 2 -x 2' =0.03÷0.06 (9) и от x 3 до x 3' , где x 3 -х 3' =0.03÷0.06 (12). После каждого инверсного слоя выращивается залечивающий слой с постоянным составом, совпадающим с финальным составом инверсного слоя: залечивающий слой In x2' Al 1-x2' As (10) после инверсного слоя (9) и залечивающий слой In x3' Al 1-x3' As (13) после инверсного слоя (12) соответственно. Таким образом, состав и параметр решетки тройного раствора In x Al 1-x As в метаморфном буфере везде изменяются непрерывно, без скачков (фиг.3). Метаморфный буфер при этом оказывается разделен на три части (8, 11, 14), каждая из которых представляет собой слой In x Al 1-x As с линейно увеличивающимся по толщине содержанием InAs х.

Технический результат достигается за счет того, что каждый инверсный слой предотвращает релаксацию части метаморфного буфера, лежащей ниже него, а вся система инверсных слоев предотвращает релаксацию всего метаморфного буфера и, следовательно, предотвращает образование дислокаций. Кроме того, инверсные слои, создавая локальные поля механической деформации, препятствуют прорастанию дислокаций в вышележащие слои, заставляя их изгибаться вбок. А снижение плотности дислокаций обуславливает более высокую подвижность носителей и, как следствие, расширяет рабочую полосу частот СВЧ транзистора.

Все описанные слои, за исключением -слоя кремния, являются нелегированными. Все слои выращены методом молекулярно-лучевой эпитаксии.

Заявителем не выявлены какие-либо технические решения, идентичные заявленному, что позволяет сделать вывод о соответствии изобретения критерию «новизна». В частности, авторам неизвестно использование введения инверсных слоев внутрь ММБ для подавления дислокаций.

[1] Dae-Hyun Kim and Jesus A. del Alamo. 30-nm InAs PHEMTs with f T =644 GHz and f max =681 GHz. IEEE Electron Device Letters, vol.31, 8, August 2010, p.806-808.

[2] EP 0840942 B1 "GaAs substrate with compositionally graded AlGaAsSb buffer for fabrication of high-indium FETs".

[3] F.Capotondi, G.Biasiol, D.Ercolani, V.Grillo, E.Carlino, F.Romanato, L.Sorba. "Strain induced effects on the transport properties of metamorphic InAlAs/InGaAs quantum wells". Thin Solid Films 484, 400-407 (2005).

[4] Nathaniel J. Quitoriano and Eugene A. Fitzgerald. "Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation". J. Appl. Physics, vol.102, p.033511.

Формула изобретения

Полупроводниковая наногетероструктура InAlAs/InGaAs с метаморфным буфером, включающая в себя монокристаллическую полуизолирующую подложку GaAs, сверхрешетку AlGaAs/GaAs, буферный слой GaAs, метаморфный буфер In x Al 1-x As, инверсный слой In x Al 1-x As, залечивающий слой с однородным составом In x4' Al 1-x4' As и активную область InAlAs/InGaAs с высоким содержанием InAs (более 70%), согласованную по параметру решетки с залечивающим слоем, отличающаяся тем, что содержание InAs х по толщине в инверсном слое In x Al 1-x As плавно уменьшается от х 4 до х 4' , где х 4 -х 4' =0,03 ÷ 0,08, содержание InAs х по толщине в метаморфном буфере увеличивается линейно от x 1 до х 4 , где x 1 ~0, х 4 0,75, внутрь метаморфного буфера на равных расстояниях друг от друга и от границ буфера вводятся два инверсных слоя In x Al 1-x As с плавным уменьшением содержания InAs х по толщине на х=0,03÷0,06, за каждым из которых следует залечивающий слой с составом, совпадающим с финальным составом инверсного слоя, толщина метаморфного буфера 1,0 ÷ 1,5 мкм.

РИСУНКИ