Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2476606

(19)

RU

(11)

2476606

(13)

C2

(51) МПК C21D8/12 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 18.02.2013 - нет данных Пошлина:

(21), (22) Заявка: 2010144252/02, 28.10.2010

(24) Дата начала отсчета срока действия патента:

28.10.2010

Приоритет(ы):

(22) Дата подачи заявки: 28.10.2010

(43) Дата публикации заявки: 10.05.2012

(45) Опубликовано: 27.02.2013

(56) Список документов, цитированных в отчете о

поиске: RU 2085598 С1, 27.07.1997. SU 1788760 А1, 27.09.1995. RU 2278171 С2, 26.06.2004. RU 2363739 C1, 10.08.2009.

Адрес для переписки:

398600, г.Липецк, ул. Московская, 30, НИС ЛГТУ

(72) Автор(ы):

Губанов Олег Михайлович (RU),

Чеглов Александр Егорович (RU),

Заверюха Анатолий Александрович (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение Высшего профессионального образования Липецкий государственный технический университет (ЛГТУ) (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ

(57) Реферат:

Изобретение относится к области металлургии, Для получения изотропной электротехнической стали в листах или рулонах с повышенными магнитными свойствами при минимальной анизотропии проводят выплавку, необязательно вакуумирование, горячую прокатку, необязательно нормализацию, однократную холодную прокатку полосы на конечную толщину, обезуглероживающий отжиг при 800-850°С и рекристаллизационный отжиг при 800-1050°С, причем нагрев до температуры обезуглероживающего отжига осуществляют со скоростью 100-500°С/сек во влажной защитной азотоводородной смеси. Нагрев до температуры рекристаллизационного отжига осуществляют со скоростью 100-500°С/сек в сухой защитной азотоводородной смеси. 1 з.п. ф-лы, 2 пр., 2 табл.

Изобретение относится к металлургии, конкретно к производству изотропной электротехнической стали, применяемой для изготовления магнитопроводов электрической аппаратуры, работающей во вращающемся магнитном поле. Данная сталь должна иметь минимальные удельные магнитные потери при перемагничивании и повышенную индукцию в средних и сильных полях при минимальной анизотропии магнитных свойств.

Известен способ (Б.В.Молотилов «Сера в электротехнических сталях», М., Металлургия, 1973, с.139-147) изготовления холоднокатаной изотропной стали, включающий однократную холодную прокатку с обжатием 65-95% и последующий рекристаллизационный отжиг при температуре 800-1200°С. В этом случае за счет применения больших обжатий и протекания превращения происходит подавление процесса вторичной рекристаллизации. Сталь, обработанная по этому способу, отличается недостаточной пластичностью и повышенными удельными потерями, что связано с наличием высокого содержания углерода в стали.

Наиболее близким к описываемому изобретению по технической сущности и достигаемому результату является способ получения изотропной электротехнической стали (по пат. RU 2085598 C21D 8/12, 1994), включающий выплавку, горячую и однократную холодную прокатку на конечную толщину, после холодной прокатки проводят электронно-лучевой отжиг полосы в интервале температур 600-1200°С, далее обезуглероживающий отжиг при 800-850°С и рекристаллизационный отжиг при 800-1050°С. Однако включение дополнительного электронно-лучевого отжига усложняет технологию производства и существенно повышает себестоимость готовой продукции, а также трудно осуществимо в условиях крупномасштабного производства. Кроме того, хотя при проведении электронно-лучевого отжига возможно достижение скоростей нагрева металла порядка 100-500°С/сек, однако применение луча такой мощности вызовет оплавление поверхности и приведет к получению брака.

Предлагаемое техническое решение направлено на решение задачи по интенсификации процессов термической обработки и улучшению магнитных свойств изотропной электротехнической стали. Это достигается проведением обезуглероживающего или рекристаллизационного отжига с применением скоростного нагрева в продольном и поперечном магнитных полях.

Указанный результат достигается при обработке по способу, включающему следующие технологические операции.

Выплавку, необязательно вакуумирование, горячую прокатку, необязательно нормализацию, однократную холодную прокатку полосы на конечную толщину, обезуглероживающий отжиг при 800-850°С во влажной азотоводородной смеси и рекристаллизационный отжиг при 800-1050°С в сухой защитной среде, при этом нагрев до температуры обезуглероживающего отжига осуществляют со скоростью 100-500°С/сек во влажной защитной азотоводородной смеси. Нагрев до температуры рекристаллизационного отжига осуществляют со скоростью 100-500°С/сек в сухой защитной азотоводородной смеси.

Особенность скоростного нагрева в продольном и поперечном магнитных полях заключается в том, что обрабатываемый материал нагревается не с поверхности, как при других способах термообработки, а по всей глубине проникновения магнитного поля и не вызывает оплавления поверхности.

Выплавку изотропной электротехнической стали проводят в электродуговой печи или кислородном конвертере. Далее проводят горячую прокатку с нормализацией или без нее, а затем холодную прокатку на конечную толщину. В дальнейшем нагрев для проведения обезуглероживающего или рекристаллизационного отжигов проводится с помощью индукторов продольного и поперечного магнитных полей па входе печи. Атмосфера нагрева определяется исходя из задач, решаемых последующей выдержкой: для проведения обезуглероживания - увлажненная азотоводородная смесь, для рекристаллизации - сухая азотоводородная смесь.

Индукторы продольного и поперечного магнитных нолей обеспечивают быстрый сквозной нагрев полосы до требуемой температуры в интервале 800-1150°С со скоростью 100-500°С/сек. Температура нагрева зависит от химического состава и группы легирования стали. Изменение скорости нагрева обеспечивается изменением частоты и мощности индуцируемого поля и зависит от толщины нагреваемого материала.

Индукционный нагрев ускоряет диффузионные процессы в стали, способствует ускорению структурных превращений и обеспечивает быстрое получение рекристаллизованного зерна по всему объему металла. В свою очередь, это способствует в дальнейшем получению большего, чем в обычных условиях, размера зерна после выдержки и развитию текстурных компонент, благоприятных с точки зрения магнитных свойств.

Пример 1 с обезуглероживающим отжигом во влажной атмосфере

Изотропную электротехническую сталь с содержанием 0,65% Si, 0,18% Al, 0,155% Р, 0,034% С, остальное - Fe и примеси выплавляли в конвертере, слябы получали путем непрерывной разливки. После горячей прокатки на толщину 2,2 мм металл подвергался травлению и холодной прокатке на толщину 0,5 мм. Холоднокатаный металл разрезался на образцы с размерами 0,5×30×305 мм. Образцы подвергались скоростному нагреву со скоростью 250°С/сек до температуры 830°С в увлажненной защитной атмосфере, время нагрева 3,3 сек. После нагрева образцы выдерживали в течение 2 мин в увлажненной атмосфере для обезуглероживания металла. Далее следовала выдержка в течение 1 мин сухой защитной азотоводородной смеси для прохождения рекристаллизации. Для сравнения образцы той же партии стали после холодной прокатки подвергали нагреву до 830°С в течение 5 мин и выдержке в течение 2 мин в увлажненной защитной атмосфере для обезуглероживания и выдержке в течение 1 мин сухой защитной азотоводородной смеси для прохождения рекристаллизации. По результатам обработки выявлено, что в образцах, проходивших скоростной нагрев, обнаружено прохождение собирательной рекристаллизации до 50%, тогда, как в структуре стали обработанной без скоростного нагрева наблюдаются только первично-рекристаллизованные зерна. Магнитные свойства по результатам отжига приведены в табл.1.

Пример 2 с рекристаллизационным отжигом в сухой атмосфере

Изотропную электротехническую сталь с содержанием 0,64% Si, 0,15% Al, 0,133% Р, 0,005% С, остальное - Fe и примеси выплавляли в конвертере, проводили вакуумирование, слябы получали путем непрерывной разливки. После горячей прокатки на толщину 2,2 мм металл подвергался травлению и холодной прокатке на толщину 0,65 мм. Холоднокатаный металл разрезался на образцы с размерами 0,65×30×305 мм. Образцы подвергались скоростному нагреву со скоростью 220°С/сек до температуры 830°С в сухой защитной азотоводородной смеси, время нагрева 3,7 сек. Далее образцы выдерживали в течение 3 мин для прохождения рекристаллизации. Обезуглероживание не требовалось, т.к. металл проходил предварительное внепечное вакуумирование. Для сравнения образцы той же партии стали после холодной прокатки подвергали нагреву до 830°С в течение 5 мин и выдержке в течение 3 мин в сухой защитной азотоводородной смеси для прохождения рекристаллизации. По результатам обработки выявлено, что в образцах, проходивших скоростной нагрев, обнаружено прохождение собирательной рекристаллизации до 50%, тогда как в структуре стали, обработанной без скоростного нагрева, наблюдаются только первично-рекристаллизованные зерна. Предварительное вакуумирование и проведение отжига в сухой защитной азотоводородной смеси позволили избавиться от зоны внутреннего окисления. Магнитные свойства по результатам отжига приведены в табл.2.

Таблица 1

Магнитные характеристики изотропной электротехнической стали, обработанной по двум режимам, толщина 0,5 мм (Пример 1)

без скоростного нагрева

со скоростным нагревом

Р 1,5/50 , Вт/кг

В 2500 , Тл

P 1,5/50 , Вт/кг

В 2500 , Тл

7,13

1,663

5,32

1,671

7,5

1,679

5,41

1,693

7,46

1,681

5,4

1,691

7,18

1,684

5,1

1,695

7,03

1,679

5,6

1,681

Таблица 2

Магнитные характеристики изотропной электротехнической стали, обработанной по двум режимам, толщина 0,65 мм (Пример 2)

без скоростного нагрева

со скоростным нагревом

P 1,5/50 , Вт/кг

В 2500 , Тл

Р 1,5/50 , Вт/кг

В 2500 , Тл

8,11

1,672

6,24

1,684

8,32

1,683

6,27

1,695

8,4

1,667

6,38

1,68

8,27

1,68

6,35

1,694

8,0

1,681

6,09

1,693

Магнитные свойства в табл.2 указаны для толщины 0,65 мм (Пример 2). При пересчете на толщину 0,5 мм они оказываются выше, чем в табл.1.

Таким образом проведение скоростного нагрева в указанных параметрах, при прочих равных условиях, обеспечивает более быстрое прохождение процессов рекристаллизации и обеспечивает повышение магнитных свойств изотропной электротехнической стали.

Исследование научно-технической литературы показало отсутствие аналогичных технических решений, т.е. изобретение соответствует критерию - «Новизна».

Формула изобретения

1. Способ получения изотропной электротехнической стали, включающий выплавку, необязательно вакуумирование, горячую прокатку, необязательно нормализацию, однократную холодную прокатку полосы на конечную толщину, обезуглероживающий отжиг при 800-850°С во влажной азотоводородной смеси и рекристаллизационный отжиг при 800-1050°С в сухой защитной среде, отличающийся тем, что нагрев до температуры обезуглероживающего отжига осуществляют со скоростью 100-500°С/с во влажной защитной азотоводородной смеси.

2. Способ по п.1, отличающийся тем, что нагрев до температуры рекристаллизационного отжига осуществляют со скоростью 100-500°С/с в сухой защитной азотоводородной смеси.