Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2476616

(19)

RU

(11)

2476616

(13)

C1

(51) МПК C22C19/05 (2006.01)

C23C24/04 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 18.02.2013 - нет данных Пошлина:

(21), (22) Заявка: 2011146965/02, 18.11.2011

(24) Дата начала отсчета срока действия патента:

18.11.2011

Приоритет(ы):

(22) Дата подачи заявки: 18.11.2011

(45) Опубликовано: 27.02.2013

(56) Список документов, цитированных в отчете о

поиске: US 2008/0038575 А1, 14.02.2008. US 2011/0014055 A1, 20.01.2011. RU 2149218 C1, 20.05.2000. RU 2249060 C2, 27.03.2005. US 2008/0163785 A1, 10.07.2008.

Адрес для переписки:

191015, Санкт-Петербург, ул. Шпалерная, 49, ФГУП "ЦНИИ КМ "ПРОМЕТЕЙ"

(72) Автор(ы):

Бобкова Татьяна Игоревна (RU),

Васильев Алексей Филиппович (RU),

Фармаковский Борис Владимирович (RU),

Шолкин Сергей Евгеньевич (RU),

Сомкова Екатерина Александровна (RU)

(73) Патентообладатель(и):

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU)

(54) ИЗНОСОСТОЙКИЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ НАНЕСЕНИЯ ИЗНОСО- И КОРРОЗИОННО-СТОЙКИХ ПОКРЫТИЙ НА КОНСТРУКЦИОННЫЕ ЭЛЕМЕНТЫ МИКРОПЛАЗМЕННЫМ ИЛИ СВЕРХЗВУКОВЫМ ГАЗОДИНАМИЧЕСКИМ НАПЫЛЕНИЕМ

(57) Реферат:

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, используемым в качестве материала для получения износо- и коррозионно-стойких покрытий на функционально- конструкционных элементах методом микроплазменного или сверхзвукового холодного газодинамического напыления. Сплав на основе никеля для нанесения износо- и коррозионно-стойких покрытий на конструкционные элементы микроплазменным или сверхзвуковым газодинамическим напылением содержит, мас.%: хром 14,0-18,0, молибден 33,0-40,0, железо 1,0-7,5, алюминий 1,0-7,3, германий 2,0-6,0, церий 0,2-0,4, иттрий 0,2-0,4, лантан 0,2-0,4, никель - остальное. Содержание интерметаллида Fe 2 Al 5 в сплаве составляет 2-15%. Технический результат - создание сплава, обладающего работоспособностью в более широком интервале температур от -196°С до 950°С. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, используемым в качестве исходного материала для получения износо- и коррозионно-стойких покрытий на функционально-конструкционных элементах методом микроплазменного или сверхзвукового холодного газодинамического напыления.

Известны сплавы системы Ni-Cr-Mo, в том числе:

- сплав на основе никеля, применяемый для нанесения защитных покрытий холодным газодинамическим напылением составом (мас.%): кобальт 0-35.0, хром 10,0-25,0, железо 0-35,0, алюминий 6,0-20,0, платина 0-35,0, гафний 1,0-5,0, кремний 1,0-6,0, ниобий 0-15,0, цирконий 0-5,0, тантал 0-5,0, рений 0-5,0, рутений 0-5,0, бор 0-1,0, углерод 0-0,2, иттрий 0,1-0,7, никель - остальное (US 2008/0038575 Al, С22С 19/05, 14.02.2008);

- аморфный, износостойкий наноструктурированный сплав для изготовления элементов оборудования и нагревательных систем, работающих в условиях трения и повышенного износа на основе никеля составом (мас.%): хром 18,0-40,0, молибден 30,0-40,0, церий 0,6-1,2, цирконий 3,0-5,0, карбид вольфрама 6,0-8,0, никель - остальное (РФ патент 2418091, С22С 45/04, 19/05, 18.11.2009);

- аморфный износостойкий наноструктурированный сплав на основе никеля системы Ni-Cr-Mo-WC-Ce составом (мас.%): хром 18,0-40,0, молибден 30,0-40,0, церий 0,6-1,2, цирконий 3,0-5,0, карбид вольфрама 6,0-8,0, остальное - никель (РФ патент 2418091, С22С 45/04, 19/05);

- аморфный прецизионный сплав для изготовления высокопрочных лент, волокон и микропроводов с большим коэффициентом тензочувствительности на основе никеля составом (% мас.): хром 10,0-20,0, молибден 25,0-40,0, кремний 6,0-7,5, бор 4,0-5,0, церий 0,8-1,5, остальное - никель (РФ патент 2219279 от 04.03.2002);

- высокопрочный аморфный сплав для изготовления микропроводов в стеклянной изоляции и тонких лент на основе никеля составом (мас.%): хром 10,0-40,0, молибден 25,0-42,0, кремний 0,6-6,0, бор 0,3-3,0, цирконий 1,2-5,0, церий, лантан, неодим или празеодим 0,1-1,8, иттрий 0,1-1,5, остальное - никель (US 7172661 от 06.02.2007).

Наиболее близким к заявляемому и взятым нами за прототип является сплав на основе никеля, применяемый для нанесения защитных покрытий холодным газодинамическим напылением составом (мас.%): кобальт 0-35,0, хром 10,0-25,0, железо 0-35,0, алюминий 6,0-20,0, платина 0-35,0, гафний 1,0-5,0, кремний 1,0-6,0, ниобий 0-15,0, цирконий 0-5,0, тантал 0-5,0, рений 0-5,0, рутений 0-5,0, бор 0-1,0, углерод 0-0,2, иттрий 0,1-0,7, никель - остальное (US 2008/0038575 Al, С22С 19/05, 14.02.2008).

Недостатком известного сплава является относительно узкий интервал рабочих температур в положительной и отрицательной областях за счет охрупчивания. В настоящее время существенно ужесточились требования к конструкционным элементам, работающим в экстремальных условиях эксплуатации при криогенных температурах (-196°С и ниже) и при повышенных и высоких (до 950°С). Известный сплав имеет диапазон рабочих температур от -50°С до 700°С. При более высоких и криогенных температурах происходит интенсивное разрушение материала.

Техническим результатом изобретения является создание сплава, обладающего работоспособностью в более широком интервале температур от -196°С до 950°С.

Технический результат достигается за счет того, что в сплав, содержащий никель, хром, железо, иттрий и алюминий, дополнительно введены молибден, германий, церий и лантан в следующем соотношении компонентов (мас.%):

хром 14,0-18,0

молибден 33,0-40,0

железо 1-7,5

алюминий 1-7,3

германий 2,0-6,0

церий 0,2-0,4

иттрий 0,2-0,4

лантан 0,2-0,4

никель - остальное,

при этом сплав содержит интерметаллид Fe 2 Al 5 в количестве 2,0-15,0%.

Основанием для сплава является Р-фаза составом Cr 18 Mo 42 Ni 40 . С целью повышения верхнего предела интервала положительных рабочих температур в сплаве образуется интерметаллид системы Fe 2 Al 5 с температурой плавления 1171°С в количестве 2,0-15,0%. Учитывая узкий интервал существования указанного интерметаллидного соединения, количество алюминия в нем должно быть в интервале от 53,0 до 55,0 мас.%. Снижение содержания хрома, молибдена и никеля не обеспечивает образования Р-фазы, что ведет к снижению положительных рабочих температур. Повышение содержания указанных элементов ведет к охрупчиванию сплава. Для исключения охрупчивания сплава в области криогенных температур, вводится дополнительная добавка германия в количестве 2,0-6,0%. Экспериментальные исследования показывают, что требуемый эффект расширения температурного диапазона наблюдается с введением указанных компонентов более 2,0%. При добавлении интерметаллида Fe 2 Al 5 более 15,0% и Ge более 6,0% наблюдается повышение твердости и значительное охрупчивание сплава, что ведет к растрескиванию покрытий, получаемых на его основе, и делает его непригодным для дальнейшего использования.

В качестве рафинирующих добавок выступают Се, Y и La. Комплексное введение этих добавок, суммарное количество которых не должно превышать 1,0%, а соотношение между ними должно быть близким к 1:1:1, что обеспечивает удаление из прецизионного сплава кислорода, азота и водорода, так как Се, Y и La имеют наибольшее сродство к указанным компонентам соответственно.

Практическая реализация предлагаемого технического решения выполнялась по следующей схеме: выплавка исходного сплава методом прямого сплавления компонентов; дробление полученного слитка; нанесение покрытий из сплава методами микроплазменного и сверхзвукового холодного газодинамического напыления.

Выплавка сплава производилась в высокочастотном индукторе с рабочей частотой 440 кГц в алундовых тиглях 3 или 4 в атмосфере аргона. Последовательность введения шихтовых компонентов следующая:

(Ni+Cr) Mo (Fe+Al) Ge (Ce+Y+La).

Масса получаемых слитков 0,7-0,8 кг.

Дробление полученного слитка производилось последовательно на щековой дробилке до фракции 3-5 мм, а затем на дезинтеграторной установке типа ДЕЗИ-15 до фракции 20-100 мкм.

Нанесение покрытий из полученного таким образом порошка производилось двумя методами:

- сверхзвукового холодного газодинамического напыления на установке типа ДИМЕТ-3. Температура гетерофазного потока при напылении не превышала 130°С при скоростях частиц 660-825 м/с, что обеспечивает практически полное отсутствие пор в покрытии;

- микроплазменного напыления на установке типа УГНП 2/2250. Кратковременный нагрев напыляемого материала из-за кратковременного пребывания порошка в плазменной струе обеспечивает частичное проплавление порошка, что способствует высокой адгезии, одновременно не изменяя фазового состава.

Толщина покрытий, формируемых перечисленными способами, составляет 30-50 мкм, что обеспечивает требуемые эксплуатационные характеристики. Исследования микротвердости полученных покрытий проводились при помощи микротвердомера НаноСкан 3D. Результаты исследования приведены в таблице.

Для определения работоспособности покрытия в экстремальных условиях было проведено 8 циклов теплонагружения от -196°С до 950°С. Проведенные исследования показали, что воздействие как криогенных, так и высоких температур не изменяют характеристик покрытия, так как не приводят к фазовым превращениям.

Для определения износо- и коррозионно-стойкости проведены испытания коррозионного поведения сплава, нанесенного на некорродирующую в солевом растворе медную подложку в соответствии с ГОСТ 9.905-82. Образцы погружали в синтетическую агрессивную среду, где выдерживались в течение 40 часов при температуре 20±2°С. Результаты исследований приведены в таблице.

Как видно из таблицы, сплав под 2 обладает высокими эксплуатационными характеристиками, удовлетворяющими требованиям к материалам, работающим в экстремальных условиях.

Формула изобретения

1. Сплав на основе никеля для нанесения износо- и коррозионно-стойких покрытий на конструкционные элементы микроплазменным или сверхзвуковым газодинамическим напылением, содержащий хром, железо, алюминий и иттрий, отличающийся тем, что он дополнительно содержит молибден, германий, церий, лантан при следующем соотношении компонентов, мас.%:

хром

14,0-18,0

молибден

33,0-40,0

железо

1,0-7,5

алюминий

1,0-7,3

германий

2,0-6,0

церий

0,2-0,4

иттрий

0,2-0,4

лантан

0,2-0,4

никель

остальное,

при этом содержание интерметаллида Fe 2 Al 5 в сплаве составляет 2-15%.

2. Сплав по п.1, отличающийся тем, что суммарное содержание иттрия, церия и лантана не превышает 1,0 мас.%.