Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2476627

(19)

RU

(11)

2476627

(13)

C1

(51) МПК C25D11/26 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 18.02.2013 - нет данных Пошлина:

(21), (22) Заявка: 2011140795/02, 03.10.2011

(24) Дата начала отсчета срока действия патента:

03.10.2011

Приоритет(ы):

(22) Дата подачи заявки: 03.10.2011

(45) Опубликовано: 27.02.2013

(56) Список документов, цитированных в отчете о

поиске: ЕР 2045366 А1, 09.04.2009. RU 2367727 С1, 20.09.2009. RU 2367728 С1, 20.09.2009. RU 2206642 С2, 20.06.2003.

Адрес для переписки:

191015, Санкт-Петербург, ул. Шпалерная, 49, ФГУП "ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ "ПРОМЕТЕЙ"

(72) Автор(ы):

Щербинин Владимир Федорович (RU),

Малинкина Юлия Юрьевна (RU),

Васильев Алексей Филлипович (RU),

Фармаковский Борис Владимирович (RU),

Орыщенко Алексей Сергеевич (RU)

(73) Патентообладатель(и):

Российская Федерация в лице Министерства промышленности и торговли России (Минпромторг России) (RU)

(54) СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ НА ТИТАН И ЕГО СПЛАВЫ МЕТОДОМ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ В ВОДНЫХ РАСТВОРАХ ПРИ ПОВЫШЕННЫХ ДАВЛЕНИЯХ

(57) Реферат:

Изобретение относится к области гальванотехники и может быть использовано в авиационной, судостроительной, нефте- и газодобывающей, перерабатывающей промышленности, приборостроении и медицинской технике. Способ включает микродуговое оксидирование (МДО) в электролите в герметичном сосуде путем создания разности потенциалов между обрабатываемой деталью в качестве анода и корпусом герметичного сосуда в качестве катода с инициированием анодных плазменных разрядов, при этом МДО на первом этапе проводят при избыточном давлении в газовой части объема герметичного сосуда более 105 атм. путем введения газов, при этом парциальное давление газов создают с учетом их растворимости в электролите, а на втором этапе в электролит вводят катодный модификатор в виде порошка окиси рутения с размером фракции в наноразмерном диапазоне от 20 до 40 нм, при этом МДО ведут при давлении 1-2 атм. Технический результат: повышение коррозионной стойкости, снижение электросопротивления за счет увеличения пористости покрытия на первом этапе и электроискрового легирования на втором этапе с обеспечением равномерности покрытия. 5 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к электролитической обработки деталей из титана и его сплавов и может быть использован в авиационной, судостроительной, нефте- и газодобывающей, перерабатывающей промышленности, приборостроении и медицинской технике, в частности система (Ti-Ru)O 2 используется для опреснительных установок и в оффшорной технике.

Известны следующие способы нанесения покрытий: шликерный способ, «холодное» газодинамическое напыление, детонационное напыление, ионноплазменное напыление и др. Общим недостатком данных методов является невозможность обработки изделий сложной формы, а также неравномерное, некачественное нанесение покрытия. Поэтому для обработки таких изделий используются электрохимические и, в частности, микроискровые способы получения покрытий.

Известен «Электролитический способ нанесения защитных и электроизоляционных покрытий» патент РФ 2367727, МКИ C25D 11/02, опубл. 20.09.2009 г. и «Titanium material with biological activity and preparation method there» патент CN 101310897, МКИ A61L 27/06, A61L 27/30, опубл. 20.02.2008 г.

К недостаткам указанных способов обработки поверхности металлов относятся низкая пористость полученных покрытий и низкое давление при обработке металлов под давлением в процессе спекания титанового порошка в вакууме и, как следствие, получение плохо развитой поверхности с высоким электросопротивлением, что принципиально важно для катализаторов, сорбентов и электродных систем.

Наиболее близким по технической сущности и достигаемому эффекту и взятым в качестве прототипа является «Method for vacuum - compression micro - plasma oxidation and device for carrying out said method» патент ЕР 2045366, МКИ C25D 11/02, опубл. 29.01.2007 г.

В соответствии с прототипом отдельные части деталей погружают в раствор электролита, который наливают в герметично закрывающийся сосуд для создания микроплазменного разряда на поверхности изделия и соответственно для формирования покрытия, которое микроплазменный разряд образует при пониженном давлении выше раствора электролита. Устройство для проведения указанного способа имеет возможность формировать разряжение над электролитом с помощью герметичного сосуда и дополнительных средств для перекачки воздуха.

Недостатком данного способа является то, что формирование покрытия происходит под низким избыточным давлением 1-2 атм., когда качественно формируется покрытие, обладающее пониженной коррозионной стойкостью за счет низкой пористости.

Техническим результатом изобретения является увеличения коррозионной стойкости в хлорсодержащих электролитах и снижение электросопротивления за счет увеличения пористости покрытия на первом этапе работы при избыточном давлении в автоклаве более 105 атм., а затем, на втором этапе работы, введение в электролит катодного модификатора (порошка окиси рутения) для заполнения образовавшихся пор.

Технический результат предлагаемого изобретения достигается за счет того, что электролитическая обработка деталей из титана и его сплавов включает микродуговое оксидирование (МДО) в электролите в герметичном сосуде, например автоклаве, путем создания разности потенциалов между обрабатываемой деталью в качестве анода и корпусом герметичного сосуда в качестве катода с инициированием анодных плазменных разрядов, отличающийся тем, что МДО на первом этапе проводят при избыточном давлении в газовой части объема автоклава более 105 атм. путем введения газов, при этом парциальное давление газов создают с учетом их растворимости в электролите, а на втором этапе в электролит вводят катодный модификатор в виде порошка окиси рутения с размером фракции в наноразмерном диапазоне от 20 до 40 нм, при этом МДО ведется при давлении 1-2 атм.

Способ обработки осуществляется следующим образом:

- предварительно в автоклаве создается избыточное давление требуемой величины путем подсоединения к магистрали (баллону) с кислородом или нейтральными газами (аргон, гелий);

- обрабатываемая деталь помещается на токопроводе в автоклав из титанового сплава, а автоклав снабжен монометром и запорным клапаном для контроля внутреннего давления;

- электролитом служат водные растворы минеральных солей, рекомендованные для микродугового оксидирования титана и его сплавов в традиционных условиях (т.е. без избыточного давления);

- при давлении более 105±1 атм. покрытие получают с увеличенной пористостью и толщиной, что и необходимо на первом этапе обработки. А при давлении менее 105±1 атм. покрытие получают с минимальным количеством пор и минимальной толщиной;

- введение в электролит наноразмерных частиц окисленного порошка рутения размером 20-40 нм является оптимальным, так как поры после МДО, в которые и вводится окисленный порошок рутения, имеют размер 30-45 нм. Порошок рутения с размерами менее 20 нм получить не удалось, т.к. он подвержен «комкованию»;

- после проведения вышеперечисленных процедур обработки детали в автоклаве под избыточным давлением обрабатываемую деталь вынимают и помещают в ванну с электролитом, рекомендуемым для МДО титана и его сплавов с добавлением катодного модификатора (порошка окиси рутения) при избыточном давлении 1-2 атм. для проведения МДО.

Предлагаемый способ опробован на специализированном участке ЦНИИ КМ Прометей .

Конкретный пример реализации предложения. На первом этапе изделие из титана ВТ1-0 подвергли МДО на установке, позволяющей вести процесс электролитической обработки в гальваностатическом режиме с тиристорным управлением типа ТПР. Продолжительность процесса 15-100 мин при плотности тока 0,510 А/дм 2 , напряжении до 400 В, в слабощелочном электролите Na 3 PO 4 -12Н 2 О 15 г/л с избыточным давлением 100, 105, 115 и 130 атм. Давление создавали путем подсоединения к магистрали (баллону) с кислородом. По мере выполнения обработки поддерживали давление на заданном уровне значений. Данный вид обработки производили для получения пористого покрытия.

На втором этапе в ванну с вышеуказанным электролитом при избыточном давлении 1, 1,5 и 2 атм. ввели катодный модификатор - окисленный порошок рутения с фракцией 20-40 нм, которая соизмерима с порами, полученными на первом этапе обработки, и провели МДО в течение 15-30 мин. Данный вид обработки производили для увеличения коррозионной стойкости, а именно получения плотного покрытия с порами, в которых находился порошок окиси рутения.

Результаты испытаний сведены в табл.1.

Ускоренные испытания проводились на общую коррозионную стойкость в растворе 10%-НСl, при температуре 100±2°С по ГОСТ 9.905-82.

Таблица 1.

Давление на первом этапе, атм

Скорость коррозии в 10%-НСl при 100±2°С, г/(м 2 ·час)

Операции

Способ

Пористость, %

Давление на втором этапе, атм

Толщина покрытия,

мкм

Электро

сопротивле

ние, кОм·см

1

100

1,0

1,0

12,0-18,0

10,0

30,45

2

Предлагае

мый

105

4,5

1,5

20,0-25,0

1,1

6,84

3

115

8,5

2,0

27,0-30,0

1,0

6,23

4

130

16,0

2,0

30,0-35,0

1,0

5,87

Известный

-

2,0

1,0-3,0

-

6,0-8,0

9,5

50,48

Эффективность процесса по сравнению с прототипом выразится в повышении срока службы и надежности деталей и изделий из титана и его сплавов за счет увеличения коррозионной стойкости и снижения электросопротивления путем повышения пористости покрытия и затем легирования поверхности катодным модификатором.

Формула изобретения

1. Способ нанесения покрытия на титан и его сплавы методом электроискрового легирования в водных растворах при повышенном давлении, включающий микродуговое оксидирование (МДО) в электролите в герметичном сосуде путем создания разности потенциалов между обрабатываемой деталью в качестве анода и корпусом герметичного сосуда в качестве катода с инициированием анодных плазменных разрядов, отличающийся тем, что МДО на первом этапе проводят при избыточном давлении в газовой части объема герметичного сосуда более 105 атм путем введения газов, при этом парциальное давление газов создают с учетом их растворимости в электролите, а на втором этапе в электролит вводят катодный модификатор в виде порошка окиси рутения с размером фракции в наноразмерном диапазоне от 20 до 40 нм, при этом МДО ведут при давлении 1-2 атм.

2. Способ по п.1, отличающийся тем, что МДО на первом и втором этапах проводят в слабощелочном электролите Na 3 PO 4 ·12H 2 O при концентрации 15 г/л.

3. Способ по п.1, отличающийся тем, что МДО на первом и втором этапах проводят при плотности тока 0,510 А/дм 2 и напряжении 400 В.

4. Способ по п.1, отличающийся тем, что МДО на первом этапе проводят в течение 15-100 мин.

5. Способ по п.1, отличающийся тем, что перед МДО на первом этапе вводят нейтральные газы или кислород.

6. Способ по п.1, отличающийся тем, что МДО на втором этапе проводят в течение 15-30 мин.