Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2476973

(19)

RU

(11)

2476973

(13)

C2

(51) МПК H02K5/132 (2006.01)

H02K9/19 (2006.01)

F04D13/06 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 18.02.2013 - нет данных Пошлина:

(21), (22) Заявка: 2011109412/07, 11.03.2011

(24) Дата начала отсчета срока действия патента:

11.03.2011

Приоритет(ы):

(22) Дата подачи заявки: 11.03.2011

(43) Дата публикации заявки: 20.09.2012

(45) Опубликовано: 27.02.2013

(56) Список документов, цитированных в отчете о

поиске: RU 2373622 C1, 20.11.2009. RU 2094229 С1, 27.10.1997. SU 1556203 А1, 09.09.1991. SU 1038596 А1, 30.08.1983. RU 2005917 C1, 15.01.1994. RU 21427 U1 (Горно-химический комбинат), 20.01.2002. SU 1566443 А1, 23.05.1990. SU 1818486 А1, 30.05.1993. RU 30403 U1, 27.06.2003. US 4514652 A, 30.04.1985. US 3648085 A, 07.03.1972. FR 1432057 A, 18.03.1966. US3629628 A, 21.12.1971. ВАСИЛЬЦОВ Э.А., НЕВЕЛИЧ В.В. Герметические электронасосы. - М.: Машиностроение, 1968, с.211-246. СИНЕВ Н.М., УДОВИЧЕНКО П.М. Герметичные водяные насосы атомных энергетических установок. - М.: Атомиздат, 1967, с.83-100. АРИНУШКИН А.С. и др. Авиационные центробежные насосные агрегаты. - М.: Машиностроение, 1967, с.140-173.

Адрес для переписки:

241008, г.Брянск, ул. Октябрьская, 101, оф.53, ООО НПФ "Свет.Вода.Тепло"

(72) Автор(ы):

Медведев Владислав Савельевич (RU),

Зюкин Игорь Михайлович (RU),

Ломовцев Иван Васильевич (RU),

Бекчив Павел Георгиевич (MD),

Герштога Михаил Федорович (MD)

(73) Патентообладатель(и):

Общество с ограниченной ответственностью Научно-производственная фирма "Свет.Вода.Тепло" (RU)

(54) ГЕРМЕТИЧНЫЙ ЭКРАНИРОВАННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ

(57) Реферат:

Изобретение относится к области электротехники и электромашиностроения, в частности - нефтехимического, и может быть использовано в приводах герметичных электронасосов и перемешивающих устройств герметичных реакторов с высокими требованиями к герметичности технологических процессов. Сущность изобретения заключается в создании герметичного экранированного электродвигателя, отличительными признаками которого являются выполнение экранов статора и ротора цельноизготовленными с плавно меняющейся толщиной и формой из неармированных многокомпонентных (или многослойных) композитных материалов с заранее заданными механическими, антикоррозионными, электромагнитными и механическими свойствами, при этом из указанных материалов выполнены и другие детали статора и ротора, закрепляющие указанные экраны. Тонкостенный экран статора герметично прикреплен к подшипниковым щитам электродвигателя, а тонкостенный экран ротора установлен по наружной поверхности последнего. Технический результат, достигаемый при использовании данного изобретения, состоит в повышении надежности и экономичности экранированных электродвигателей в различных условиях их работы. 4 ил.

Предлагаемое изобретение относится к областям электромашиностроения и нефтехимического машиностроения и может найти применение в приводах центробежных герметичных электронасосов и перемешивающих устройств герметичных реакторов с высокими требованиями к герметичности технологических процессов.

В настоящем изобретении усовершенствуются известные конструкции герметичных экранированных электродвигателей с экранами (цилиндрическими тонкостенными гильзами из немагнитных коррозионно-стойких материалов с большим удельным сопротивлением и высокой магнитной проницаемостью) внутри пакета статора и по наружной поверхности ротора (для защиты от воздействия жидкостей, находящихся в зазоре между ними). Экраны таких «сухих» статоров и роторов обычно выполняются из нержавеющих сталей типа 12Х18 H10Т, нихромов типа ЭИ-442, титановых сплавов типа ВТ-3 и других немагнитных коррозионно-стойких материалов (см., например, Васильцов Э.А, Невелич В.В. «Герметические электронасосы». М., Машиностроение, 1968 г., стр.211-246, Н.М.Синев, П.М.Удовиченко. «Герметические водяные насосы атомных энергетических установок». Атомиздат, 1967 г., стр.83-100, А.С.Аринушкин и др. «Авиационные центробежные насосные агрегаты». М., 1967, стр.140-173, а также герметичный экранированный электродвигатель по патенту РФ 2373622, авторские свидетельства SU 1556203, SU 1038596, патент RU 2005917, свидетельства на полезную модель RU 21427 и RU 4567; а.с. SU 1777203, SU 1815424, SU 1566443, SU 1818486, SU 1763721, свидетельство на полезную модель RU 30403 и др.

Конструкция герметичного экранированного электродвигателя по патенту RU 2373622 может быть принята за базовый объект. Недостатками указанных конструкций являются:

- необходимость подбора материала экранов (гильз) для определенных агрессивных сред. Так, например, нихромовые гильзы в коррозионном отношении оказываются недостаточно надежными;

- необходимость выполнять тонкостенные металлические экраны (например, при изготовлении методами холодной вытяжки) с одинаковой толщиной (0,25-0,5 мм) по всей длине статорного пространства;

- низкая надежность тонкостенных металлических экранов, особенно сварных по длине цилиндра, вследствие воздействия на них механических, температурных, коррозионных и др. нагрузок, что приводит к выходу из строя электродвигателей.

Кроме того, недостатками конструкции по патенту RU 2373622 являются:

- ступенчатая составная форма экрана, что даже при образовании склеиванием монолитной конструкции приводит к неравномерности восприятия гетерогенной системой разного рода нагрузок (механических, тепловых, электромагнитных и др.) и магнитной проницаемости экрана;

- армирование материала тонкостенных экранов (обычно 0,25÷0,6 мм) в виде кольцевой намотки нитей или в виде замкнутых колец, особенно с учетом низкого модуля упругости полимеров, не обеспечивает устойчивости формы экранов и также создает анизотропную среду свойств материалов экранов. А армирование металлической проволокой в ряде случаев не обеспечивает должной адгезии ее к основному материалу.

Задачей настоящего изобретения является устранение указанных недостатков, т.е. возможность выполнять экраны с различной плавноменяющейся толщиной и формой участков гомогенной изотропной системы по их длине и повышение надежности и качества экранов за счет подбора неармированных материалов, стойких в очень агрессивных средах (таких как минеральные и органические кислоты и их ангидриды, щелочи и т.д.), и создания заранее необходимых именно устанавливаемому экрану и совместимых в выбранном материале улучшенных электромагнитных и антикоррозионных, а также механических и др. характеристик. Кроме того, предусматривается изготовление из аналогичных материалов и других деталей электродвигателя (подшипниковых щитов и распорных втулок статора, прижимных колец ротора и т.д.).

Решение указанной задачи достигается за счет того, что в электродвигателе, герметичном, экранированном, содержащем станину и подшипниковые щиты, с расположенными между ними статором, по внутренней расточке которого установлен закрепленный к подшипниковым щитам тонкостенный экран, изготовленный из немагнитных с высоким удельным электрическим сопротивлением материалов, и ротором, по наружной поверхности которого также установлен закрепленный к его кольцам тонкостенный экран, выполненный из аналогичных материалов, согласно изобретению указанные экраны выполнены цельноизготовленными с плавноменяющейся толщиной и формой из неармированных многокомпонентных (или многослойных) композитных или углеродных материалов с заранее заданными антикоррозионными, электромагнитными и механическими свойствами, причем из этих же материалов выполнены и закрепляющие экраны другие детали статора и ротора (подшипниковые щиты статора, кольца ротора и др.).

Уровень совместимых физико-механических, теплофизических антикоррозионных, электрических и магнитных характеристик и их распределение по направлениям в указанных неармированных материалах экранов можно регулировать в зависимости от предъявляемых требований в каждом конкретном случае технологическими способами, наполнителями (углеродные наночастицы, тонкодисперсные частицы металлов, нитридов, керамики и т.д.) и термообработкой. Указанные материалы с высоким эффективным уровнем соответствия одновременно антикоррозийных и электромагнитных характеристик требованиям, предъявляемым к экранам (гильзам) герметичных электронасосов, находятся пока еще в стадиях разработки (см. ссылки ниже в описании).

Такие гомогенные изотропные материалы обладают высокой однородностью состава и стабильностью характеристик во всех точках( в отличие от армированных).

По данным технической литературы изделия из композитов, примерно, в 2-3 раза легче стали и в 3 раза прочнее ее лучших марок, а применение композитов позволяет снизить трудоемкость изготовления изделий, примерно, на 30%, их материалоемкость в 1,5-3 раза и энергоемкость в 8-10 раз. Исследования коррозийной стойкости углепластиков типа УПФ в более чем 150 средах при температурах от 20 до 100°С дали положительные результаты возможности их применения даже в очень агрессивных средах.

При этом существенным отличием и новизной заявляемой конструкции является то, что экраны изготовлены с разной плавноменяющейся толщиной и формой участков цельновыполненного без сварки или склеивания (цельнолитого, цельнопрессованного или напыленного) экрана, что создает плавный переход цилиндров разной толщины в другие формы (например, в конус), обеспечивает лучшую устойчивость формы всего экрана и гарантированное по надежности восприятие давления во внутреннем контуре (в полостях между статорами и роторами), которое, например, в выпускаемых герметичных электронасосах составляет до 100 кг/см 2 . В этом случае утолщенные края цилиндрического экрана облегчают приварку или склейку (клеями, стойкими к агрессивным средам) экрана статора к подшипниковым щитам (которые, как и распорные втулки статора, кольца ротора и другие детали электронасосов, также могут быть изготовлены из композитов, углепластиков или других указанных материалов).

Изготовление экранов из нанокомпозитов еще и обеспечивает более плотное, беззазорное их прилегание к посадочным поверхностям (обычно зазор между статором и металлической гильзой составляет 0,2 мм), а их пластичность позволяет снижать нагрузку на экраны при нагреве деталей электродвигателя, возникающую вследствие разных коэффициентов теплового расширения.

Аналогично могут быть изготовлены экраны и для торцевых (дисковых) электродвигателей.

Кроме того, внедрение прогрессивных высокочастотных регулируемых электроприводов, например, в центробежных герметичных насосах, ограничено низкой экономичностью привода - с применением металлических герметизирующих экранов. Это обусловлено тем, что потери в экранирующей металлической гильзе пропорциональны квадрату частоты тока. При увеличении частоты тока от 50 до 400 Гц (авиакосмические устройства) потери в экранирующей гильзе увеличиваются в 64 раза.

Таким образом, заявляемая конструкция имеет вышеуказанные новые технические преимущества по сравнению с базовым объектом и другими приведенными на стр.1 конструкциями.

Данные, подтверждающие достоверность решения задачи изобретения, описаны в специальной технической литературе (см., например, «Физика композиционных материалов» Н.Н.Трофимов и др. «Мир», том I, раздел IV - глава 5, раздел VI - глава 5, и том II, раздел VIII - главы 2, 3, 4, 8; «Нанокомпозиты на основе полимеров и углеродных наночастиц и нановолокон» В.Мордкевич и др., Наноиндустрия, 1/2009, «Композиционные материалы на основе углерода» Костиков В.И. и др.).

Сущность изобретения поясняется чертежами (фиг.1, 1а, 1б и 2).

Данный герметичный экранированный электродвигатель включает в себя (см. фиг.1): статор 1, расположенный в станине 2 между подшипниковыми щитами 3 и 4 и защищенный по внутренней проточке герметизирующим экраном (гильзой) 5 (на фиг.1 - выполненным из композитных или углеродных неармированных материалов, а на фиг.1a - металлическим). Цельновыполненный композитный экран имеет плавноизменяющуюся толщину и форму по его длине. Экран герметично закреплен к подшипниковым щитам. Внутри экрана статора 5 на валу 6 расположен ротор 7, также защищенный от воздействия жидкости, протекающей в зазоре между статором и ротором, экраном 8. На фиг.2 изображена конструкция статорного экрана 5, выполненная из композитных или углеродных материалов. Экраны из композитов статора и ротора могут быть приварены (или приклеены) к деталям электродвигателя или электронасоса в целом, а могут быть уплотнены между конусно затянутыми их деталями (фиг.1б), также выполненными из аналогичных материалов.

При работе герметичного экранированного электродвигателя статор 1 благодаря закрепленному на подшипниковых щитах 3 и 4 экрану 5 и ротор 7, установленный на валу 6, с закрепленным на кольцах ротора экраном 8, защищены от воздействия протекающей в зазоре между пакетами статора и ротора жидкости. Причем установленные на статоре и роторе экраны из высокопрочных, коррозионно-стойких немагнитных композитов обеспечивают надежное восприятие механических, тепловых нагрузок, высокую коррозионную стойкость и высокую магнитную проницаемость по всем сечениям цилиндрических и конического (для экрана статора) участков экранов.

Предлагаемая новая конструкция герметичного экранированного электродвигателя обеспечивает повышенную механическую и антикоррозионную надежность, обеспечивает устойчивость плавноменяющихся форм участков изотропной системы экранов статора и ротора, имеет практическую ценность и может создать технический и экономический эффект при изготовлении технологического оборудования в электромашиностроительной, нефтехимической и др. отраслях промышленности.

Формула изобретения

Электродвигатель герметичный экранированный, содержащий станину и подшипниковые щиты с расположенными между ними статором, по внутренней расточке которого установлен закрепленный к подшипниковым щитам тонкостенный экран, изготовленный из немагнитных с высоким удельным электрическим сопротивлением материалов, и ротором, по наружной поверхности которого также установлен тонкостенный экран, отличающийся тем, что экраны выполнены цельноизготовленными с плавно меняющейся толщиной и формой из неармированных многокомпонентных (или многослойных) композитных материалов с заранее заданными антикоррозионными, электромагнитными и механическими свойствами, причем из этих же материалов выполнены и закрепляющие экраны другие детали статора и ротора.

РИСУНКИ