Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2477175

(19)

RU

(11)

2477175

(13)

C1

(51) МПК B01J21/04 (2006.01)

B01J23/50 (2006.01)

B01J37/00 (2006.01)

B22F9/24 (2006.01)

B82B3/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 06.03.2013 - нет данных Пошлина:

(21), (22) Заявка: 2011129238/05, 14.07.2011

(24) Дата начала отсчета срока действия патента:

14.07.2011

Приоритет(ы):

(22) Дата подачи заявки: 14.07.2011

(45) Опубликовано: 10.03.2013

(56) Список документов, цитированных в отчете о

поиске: RU 2340607 С2, 10.12.2008. RU 2322327 С2, 20.04.2008. RU 2374172 C1, 27.11.2009. RU 2394668 C1, 20.07.2010. EP 1486457 A1, 15.12.2004.

Адрес для переписки:

125047, Москва, Миусская пл., 9, Российский химико-технологический университет, патентно-лицензионный отдел

(72) Автор(ы):

Антонов Алексей Юрьевич (RU),

Сергеев Михаил Олегович (RU),

Кузнецов Михаил Андреевич (RU),

Ревина Александра Анатольевна (RU),

Боева Ольга Анатольевна (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева (РХТУ им. Д.И. Менделеева) (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ИЗОТОПНОГО ОБМЕНА ПРОТИЯ-ДЕЙТЕРИЯ

(57) Реферат:

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия. Способ включает получение наночастиц металла в обратномицеллярном растворе и последующее нанесение наночастиц металла на носитель Al 2 O 3 , обратномицеллярный раствор приготовляют из раствора соли металла родия RhCl 3 или рутения RuOHCl 3 , ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и изооктана, причем приготовление обратномицеллярных растворов родия или рутения происходит при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, а затем добавляют к обратномицеллярному раствору водно-спиртовой раствор в количестве 5-50 мас.%, раствор кверцетина в количестве 0,5-5 мас.% и аммиачный раствор в количестве 10-30 мас.%. Изобретение позволяет получить катализатор для изотопного обмена протия-дейтерия, обладающего высокой каталитической активностью и предназначенного для работы в интервале температур 77-400 K. 1 з.п. ф-лы, 4 табл., 4 пр.

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия.

Известен способ получения катализатора путем ионного обмена, при котором носитель из огнеупорного оксида, содержащего катион водорода, обрабатывают раствором, содержащим катионы металлов. Непосредственно после обработки оксид промывают водой для отделения химически несвязанных металлических катионов. Далее оксид сушат, при этом часть металлических катионов восстанавливается при нагревании огнеупорного оксида до элементарного металла путем отделения от связанной воды, которая ассоциирована с металлическими катионами (Пат. Германии 1542012 кл. B01Y 37/30 от 21.10.76 г.). Этот катализатор используется только для ионного обмена.

Известен способ получения катализатора для изотопного обмена между водой и водородом, где катализатор включает гидрофобную пористую матрицу с диспергированной в ней платиной и, по крайней мере, другой металл, выбранный из группы хрома или титана (пат. EP 1486457, кл. B01D 59/00, B01Y 37/00-37/02 от 06.06.2003 г.). Однако этот катализатор используется только для изотопного обмена между водой и водородом.

Наиболее близким по технической сущности и достигаемому результату является способ получения катализатора Pt миц /Al 2 O 3 для изотопного обмена протия и дейтерия и о-п конверсии протия. Наночастицы Pt образуются при радиационно-химическом восстановлении ионов платины в обратномицелярных системах H 2 [RtCl 6 ]/H 2 O/ацетон/бис(2 этилгексил)сульфосукцинат натрия/изооктан. Наночастицы получены из трех различных исходных обратномицелярных растворов, отличающихся значениями коэффициента солюбилизации =1,5, 3 и 5 («Перспективные материалы» с.288-293 2010 г.).

Однако катализатор обладает невысокой каталитической активностью.

Техническим результатом изобретения является получение катализатора для изотопного обмена протия-дейтерия, обладающего высокой каталитической активностью и предназначенного для работы в интервале температур 77÷400 K.

Этот технический результат достигается получением катализатора для изотопного обмена протия-дейтерия, включающего получение наночастиц металла в обратномицеллярном растворе, состоящем из раствора соли металла, ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и неполярного растворителя, изооктана, с последующим нанесением на носитель Al 2 O 3 , причем восстановление соли металла происходит при взаимодействии с кверцетином, в качестве соли металла используют RhCl 3 или RuOHCl 3 и готовят обратномицеллярные растворы родия или рутения при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, затем добавляют водно-спиртовой раствор в количестве 5-50 мас.%, раствор кверцетина в количестве 0,5-5 мас.% и аммиачный раствор в количестве 10-30 мас.%.

В качестве спирта в водно-спиртовом растворе используют изопропанол.

Пример 1

Готовился обратномицеллярный раствор соли родия RhCl 3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 1:1. Затем добавляют водно-спиртовой раствор в количестве 3,4·10 -3 г (5 мас.%), раствор кверцетина 3,4·10 -4 г (0,5 мас.%) и аммиачный раствор в количестве 2,0·10 -2 г (30 мас.%).

Взвешен 1 г носителя Al 2 O 3 и помещен в 10 мл полученного обратномицеллярного раствора.

По убыли интенсивности пиков, соответствующих наночастицам родия в растворе с погруженным в него носителем Al 2 O 3 , судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Rh/Al 2 O 3 по отношению к реакции изотопного обмена протия-дейтерия 4,48·10 14 молекул/(см 2 ·с), что в ~2 раза превышает активность катализатора Pt миц /Al 2 O 3 , выбранного в качестве прототипа. Данные по активности данного образца катализатора Rh/Al 2 O 3 , приготовленного по примеру 1, в интервале температур 77-400 К представлены в таблице 1.

Пример 2

Готовился обратномицеллярный раствор соли родия RhCl 3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 10:1. Затем добавляют водно-спиртовой раствор в количестве 3,4·10 -2 г (50 мас.%), раствор кверцетина 3,4·10 -3 г (5 мас.%) и аммиачный раствор в количестве 6,8·10 -3 г (10 мас.%).

Взвешен 1 г носителя Al 2 O 3 и помещен в 10 мл полученного обратномицеллярного раствора.

По убыли интенсивности пиков, соответствующих наночастицам родия в растворе с погруженным в него носителем Al 2 O 3 , судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Rh/Al 2 O 3 по отношению к реакции изотопного обмена протия-дейтерия составила 4,24·10 -4 молекул/(см 2 ·с), что в ~2 раза превышает активность катализатора Pt миц /Al 2 O 3 , выбранного в качестве прототипа.

Данные по активности данного образца катализатора Rh/Al 2 O 3 , приготовленного по примеру 2, в интервале температур 77÷400 К представлены в таблице 2.

Пример 3

Готовился обратномицеллярный раствор соли рутения RuOHCl 3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 1:1. Затем добавляют водно-спиртовой раствор в количестве 3,4·10 -3 г (5 мас.%), раствор кверцетина 3,4·10 -4 г (0,5 мас.%) и аммиачный раствор в количестве 2,0·10 -2 г (30 мас.%).

Взвешен 1 г носителя Al 2 O 3 и помещен в 10 мл полученного обратномицеллярного раствора.

По убыли интенсивности пиков, соответствующих наночастицам рутения в растворе с погруженным в него носителем Al 2 O 3 , судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с нанесенными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ru/Al 2 O 3 по отношению к реакции изотопного обмена протия-дейтерия составила 4,45·10 -14 молекул/(см 2 ·с), что в ~2 раза превышает активность катализатора Pt миц /Al 2 O 3 , выбранного в качестве прототипа.

Данные по активности данного образца катализатора Ru/Al 2 O 3 , приготовленного по примеру 3, в интервале температур 77-400 К представлены в таблице 3.

Пример 4

Готовился обратномицеллярный раствор соли рутения Ru/Al 2 O 3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 10:1. Затем добавляют водно-спиртовой раствор в количестве 3,4·10 -2 г (50 мас.%), раствор кверцетина 3,4·10 -3 г (5 мас.%) и аммиачный раствор в количестве 6,8·10 -3 г (10 мас.%).

Взвешен 1 г носителя Al 2 O 3 и помещен в 10 мл полученного обратномицеллярного раствора.

По убыли интенсивности пиков, соответствующих наночастицам рутения в растворе с погруженным в него носителем Al 2 O 3 , судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с нанесенными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ru/Al 2 O 3 по отношению к реакции изотопного обмена протия-дейтерия составила 4,08·10 -14 молекул/(см 2 ·с), что в ~2 раза превышает активность катализатора Pt миц /Al 2 O 3 , выбранного в качестве прототипа.

Результаты измерений удельной каталитической активности образца катализатора Ru/Al 2 O 3 , приготовленного по примеру 4, в интервале температур 77-400 K представлены в таблице 4.

Таблица 1.

Значения удельной каталитической активности Rh/Al 2 O 3 , приготовление которого рассмотрено в примере 1, в отношении реакции изотопного обмена протия-дейтерия (соотношение водного раствора RhCl 3 к бис(2-этилгексил)сульфосукцинату натрия составляет 1:1)

K ул ·10 -14 молекул/(см 2 ·с) при Т, К

77

110

133

153

163

173

193

227

243

295

320

370

400

4,48

4,25

4,41

5,91

8,09

14,00

14,20

16,41

34,05

62,48

70,01

90,40

101,10

Таблица 2.

Значения удельной каталитической активности Rh/Al 2 O 3 , приготовление которого рассмотрено, в примере 2, в отношении реакции изотопного обмена протия-дейтерия (соотношение водного раствора RhCl 3 к бис(2-этилгексил) сульфосукцинату натрия составляет 10:1)

K ул ·10 -14 молекул/(см 2 ·с) при Т, К

77

110

133

153

163

173

193

227

243

295

320

370

400

4,24

4,12

4,50

6,03

8,22

13,91

14,62

16,59

36,60

61,08

71,96

92,02

99,92

Таблица 3.

Значения удельной каталитической активности Ru/Al 2 Oз, приготовление которого рассмотрено в примере 3, в отношении реакции изотопного обмена протия-дейтерия (соотношение водно-спиртового раствора RuOHCl 3 к бис(2-этилгексил)сульфосукцинату натрия составляет 1:1)

K ул ·10 -14 молекул/(см 2 ·с) при Т, К

77

110

133

153

163

173

193

227

243

295

320

370

400

4,45

4,36

4,09

5,84

8,34

14,66

15,11

16,43

34,62

64,80

70,00

90,07

102,13

Таблица 4.

Значения удельной каталитической активности Ru/Al 2 O 3 , приготовление которого рассмотрено в примере 4, в отношении реакции изотопного обмена протия-дейтерия (соотношение водно-спиртового раствора RuOHCl 3 к бис(2-этилгексил)сульфосукцинату натрия составляет 10:1)

K ул ·10 -14 молекул/(см 2 ·с) при Т, К

77

110

133

153

163

173

193

227

243

295

320

370

400

4,08

4,32

4,51

5,47

8,47

14,82

15,14

16,97

34,22

64,61

72,01

93,30

99,87

Представленные данные показывают отсутствие значимых различий в величинах каталитической активности при отношении мольного количества водно-спиртового раствора соли родия или рутения с добавлением аммиака к мольному количеству ПАВ в диапазоне от 1:1 до 10:1.

Формула изобретения

1. Способ получения катализатора для изотопного обмена протия-дейтерия, включающий получение наночастиц металла в обратномицеллярном растворе, состоящем из раствора соли металла, ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и неполярного растворителя, изооктана, с последующим нанесением на носитель Al 2 O 3 , отличающийся тем, что восстановление соли металла происходит при взаимодействии с кверцетином, в качестве соли металла используют RhCl 3 или RuOHCl 3 и готовят обратномицеллярные растворы родия или рутения при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, затем добавляют водно-спиртовый раствор в количестве 5-50 мас.%, раствор кверцетина в количестве 0,5-5 мас.% и аммиачный раствор в количестве 10-30 мас.%.

2. Способ получения катализатора для изотопного обмена протия-дейтерия по п.1, отличающийся тем, что в качестве спирта в водно-спиртовом растворе используется изопропанол.