Главная страница  |  Описание сайта  |  Контакты
Патент на изобретение №2473885

(19)

RU

(11)

2473885

(13)

C2

(51) МПК G01N21/17 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 17.01.2013 - нет данных Пошлина:

(21), (22) Заявка: 2011103746/28, 02.02.2011

(24) Дата начала отсчета срока действия патента:

02.02.2011

Приоритет(ы):

(22) Дата подачи заявки: 02.02.2011

(43) Дата публикации заявки: 10.08.2012

(45) Опубликовано: 27.01.2013

(56) Список документов, цитированных в отчете о

поиске: RU 2301409 С2, 20.06.2007. RU 2275619 С2, 27.04.2006. US 20020106810 A1, 08.08.2002. EP 515194 B1, 31.10.2001. US 7674599 B2, 09.03.2010.

Адрес для переписки:

443011, г.Самара, ул. Академика Павлова, 1, Самарский государственный университет (СамГУ)

(72) Автор(ы):

Онучак Людмила Артёмовна (RU),

Сизоненко Галина Михайловна (RU),

Арутюнов Юрий Иванович (RU),

Дудиков Вадим Сергеевич (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования "Самарский государственный университет" (RU)

(54) КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ТИОМОЧЕВИНЫ И ФЛУОРЕСЦЕИНА НАТРИЯ ПРИ ИХ СОВМЕСТНОМ ПРИСУТСТВИИ В ПЛАСТОВЫХ ВОДАХ

(57) Реферат:

Изобретение относится к спектрофотометрическим методам анализа и может быть использовано в нефтяной и газовой отраслях промышленности для количественного определения в пластовых водах многокомпонентных композиций индикаторов, например тиомочевины и флуоресцеина натрия. Количественный анализ, при котором исследуемую пробу отделяют от нефти, очищают от механических примесей, осветляют в центрифуге, добавляют щелочь для количественного определения флуоресцеина натрия люминесцентным методом, а концентрацию тиомочевины и флуоресцеина натрия определяют интерполяционным методом по результатам трех совокупных измерений, одно из которых относится к исследуемой пробе, а два других к модельным растворам, приготовленным из исследуемой пробы путем фиксированного разбавления пластовой водой и фиксированной добавки исследуемого индикатора в таком количестве, чтобы сигнал одного из модельных растворов был больше, а для другого меньше, чем сигнал исследуемой пробы. Причем для анализа тиомочевины в исследуемую пробу добавляют фиксированное количество пентацианоакваферриата натрия и флуоресцеин натрия в количестве, равном измеренному в исследуемой пробе люминесцентным методом. Техническим результатом изобретения является повышение точности измерения концентрации тиомочевины и флуоресцеина натрия. 1 пр., 2 табл.

Изобретение относится к спектрофотометрическим методам анализа и может быть использовано в нефтяной и газовой отраслях промышленности для количественного определения в пластовых водах, специально закачиваемых в продуктивные пласты различных водорастворимых, малосорбируемых породой и экологически безопасных органических и неорганических соединений, называемых индикаторами или трассерами.

Известно (см.: Соколовский Э.В., Соловьев Г.Б., Тренчиков Ю.Т. Индикаторные методы изучения нефтегазоносных пластов. М.: Недра, 1986. - 158 с.), что в качестве индикаторов на нефтяных промыслах применяют флуоресцеин натрия, роданид аммония, хлористый натрий, нитраты, карбамид, тиомочевину и другие вещества. Наиболее сложной стадией индикаторных исследований является количественное определение в пластовых жидкостях метящего вещества (индикатора). Это связано с многокомпонентным составом пластовых жидкостей и их большой загрязненностью. Поэтому пробу пластовой воды перед измерением отделяют от нефти, фильтруют и добавляют соответствующие реагенты для анализа.

Известна методика определения концентраций четырехкомпонентной композиции индикаторов (флуоресцеин натрия, нитрат аммония, карбамид, тиокарбамид) при их совместном присутствии в пластовых водах с использованием спектрофотометрии и специальных градуировочных зависимостей для каждого отдельного индикатора (см.: Чернорубашкин А.И., Макеев Г.А., Гавриленко Г.А., Шамкин В.Н. // Нефтепромысловое дело. ВНИИОЭНГ, 1980. 5. С.15-15).

Известен способ спектрофотометрического определения концентраций трех различных индикаторов в пластовых водах (флуоресцеин натрия, роданид калия и карбамид) интерполяционным методом без построения градуировочных зависимостей с использованием двух и более растворов с фиксированным содержанием исследуемых компонентов в качестве внешних стандартов (см.: Онучак Л.А., Арутюнов Ю.И., Кудряшов С.Ю., Сизоненко Г.М., Дейнека О.В. Патент РФ 2003134880 от 01.12.2003 г.).

Известна также меченая жидкость для контроля за разработкой нефтегазового месторождения, содержащая в качестве метящего вещества тиомочевину. Количественно тиомочевина в пластовой воде определяется по реакции с калием железосинеродистым в присутствии уксусной кислоты (см.: Соловьев Г.Б., Соколовский Э.В., Сааков С.А. Авторское свидетельство СССР 646036 от 05.02.1979 г. по заявке Северо-Кавказского государственного научно-исследовательского и проектного института нефтяной промышленности 2554605 от 15.12.1977 г.).

Однако известные методики определения количественного содержания как индивидуальных индикаторов, так и отдельных индикаторов при их совместном присутствии в пластовых водах (за исключением флуоресцеина натрия методом люминесценции) имеют относительно низкие значения чувствительности и точности измерения концентрации из-за неучтенных при градуировке погрешностей, вносимых изменяющимся в процессе исследований составом пластовых вод и непостоянным уровнем фона неопределяемых ранее закаченных индикаторов на результаты измерения.

Наиболее близким к предлагаемому изобретению по совокупности существенных признаков является способ определения количественного содержания индикаторов в пластовых водах, при котором пробу, содержащую флуоресцеин натрия в присутствии многокомпонентной композиции индикаторов (нитрат натрия, роданид калия, карбамид), очищают от механических примесей, осветляют центрифугированием, в полученный раствор добавляют щелочь для количественного определения флуоресцеина натрия люминесцентным методом по предварительно выполненной градуировочной зависимости, причем концентрацию отдельных индикаторов в пробе определяют интерполяцией по результатам трех совокупных спектрофотометрических измерений на длинах волн, фиксированных для каждого отдельного индикатора, одно из измерений проводят для очищенной исследуемой пробы с добавками соответствующих реагентов, а два других измерения проводят для модельных растворов, приготовленных из исходной пластовой воды (без индикаторов) с добавлением флуоресцеина натрия в количестве, равном измеренному в пробе по градуировочной зависимости, и навески исследуемого индикатора в таком количестве, чтобы сигнал спектрофотометра для одного из модельных растворов был больше, а для другого - меньше, чем сигнал исследуемой пробы (см.: Онучак Л.А., Арутюнов Ю.И., Кудряшов С.Ю., Сизоненко Г.М., Астров В.И. Патент РФ 2301409 от 20.06.2007 г. по заявке СамГУ 2005124417 от 01.08.2005 г.).

В известном способе количественное содержание флуоресцеина натрия определяют по предварительно выполненной градуировочной зависимости с использованием модельных минерализованных растворов дистиллированной воды с фиксированными добавками флуоресцеина натрия при рН 9.

Недостатками известного способа являются отсутствие возможности спектрофотометрического определения содержания тиомочевины при одновременном присутствии флуоресцеина натрия в пробе из-за наложения его спектра поглощения на спектр тиомочевины, а также снижение точности измерения концентрации флуоресцеина натрия по предварительно выполненной градуировке на модельных растворах дистиллированной воды за счет влияния изменения состава и свойств пластовой воды при исследовании нефтегазовых месторождений.

Задачей изобретения является повышение точности спектрофотометрического определения концентрации тиомочевины и флуоресцеина натрия при их совместном присутствии в пластовых водах.

Эта задача решается за счет того, что при количественном анализе тиомочевины и флуоресцеина натрия при их совместном присутствии в пластовых водах исследуемую пробу отделяют от нефти, очищают от механических примесей, осветляют в центрифуге, добавляют в полученный раствор щелочь для количественного определения флуоресцеина натрия люминесцентным методом, причем концентрации тиомочевины и флуоресцеина натрия определяют интерполяционным методом по результатам трех совокупных измерений, одно из которых относится к исследуемой пробе, а два другие к модельным растворам, приготовленным из исследуемой пробы, с фиксированным разбавлением исходной пластовой водой (без индикатора) и фиксированной добавкой исследуемого индикатора в таком количестве, чтобы сигнал одного из модельных растворов был больше, а для другого меньше, чем сигнал исследуемой пробы, для анализа тиомочевины добавляют в исследуемую пробу фиксированное количество пентацианоакваферриата натрия и флуоресцеина натрия в количестве, равном измеренному в исследуемой пробе люминесцентным методом.

При решении поставленной задачи создается технический результат, который заключается в следующем:

- измерение концентрации тиомочевины и флуоресцеина натрия при их совместном присутствии в пробе осуществляют интерполяционным методом по результатам трех совокупных измерений, одно из которых относится к анализу исследуемой пробы, а два других к модельным растворам, приготовленным из исследуемой пробы путем фиксированного разбавления и фиксированной добавки исследуемого индикатора в таком количестве, чтобы сигнал для одного из растворов был больше, а для другого меньше сигнала исследуемой пробы;

- добавление флуоресцеина натрия в исследуемую пробу в количестве, равном измеренному люминесцентным методом в пробе при анализе тиомочевины, уменьшает погрешность спектрофотометрического измерения, связанную с наложением спектров поглощения флуоресцеина натрия на спектр комплексного соединения тиомочевины и пентацианоакваферриата натрия на длине волны 590 нм;

- интерполяционный метод измерения позволяет уменьшить погрешность измерения по сравнению с методом абсолютной градуировки за счет линеаризации только участка градуировочной зависимости, в точке измерения между двумя фиксированными внешними добавками, одна из которых обеспечивает большую, а другая меньшую концентрацию индикатора по отношению к его концентрации в исследуемой пробе, а не во всем рабочем диапазоне, как в случае построения градуировочной зависимости от минимальной до максимально возможной концентрации индикатора.

Пример конкретного выполнения способа

Предлагаемый способ количественного анализа тиомочевины и флуоресцеина натрия при их совместном присутствии в пластовых водах выполняют с использованием серийных флуоресцентных и спектрофотометрических анализаторов, например, Флюорат 02-3М («Люмэкс», Санкт-Петербург) и КФК-2.

Способ осуществляют следующим образом. Пробу пластовой воды из нефтедобывающей скважины, содержащую флуоресцеин натрия в присутствии тиомочевины, предварительно отделяют от нефти в делительной воронке, механические примеси удаляют фильтрованием через бумажный фильтр ФОФС-17 «синяя лента». Затем пробу осветляют путем осаждения коллоидных примесей с помощью коагулянта FeCl 3 в щелочной среде. Полученный раствор переливают вместе с осадком в центрифужные пробирки и центрифугируют при 8-10 тыс. об/мин до тех пор, пока проба не станет прозрачной (без видимой опалесценции). Приготовленные описанным выше способом пробы пластовой воды подвергают следующим дополнительным операциям для определения концентрации флуоресцеина натрия и тиомочевины:

1) определение флуоресцеина натрия. В пробу добавляют несколько капель 2 н. NaOH для получения рН раствора, равного 9. При этом значительно возрастает интенсивность флуоресценции, измерение которой с использованием прибора Флюорат 02-3М при длине волны 525 нм обеспечивает определение концентрации флуоресцеина натрия интерполяционным методом. Для этого проводят дополнительные измерения концентрации флуоресцеина натрия в двух модельных растворах, приготовленных из исследуемой пробы путем фиксированного разбавления исходной пластовой воды (без индикаторов) и фиксированной добавки флуоресцеина натрия в таком количестве, чтобы концентрация индикатора для одного из них была больше, а для другого меньше, чем измеренная прибором в исследуемой пробе;

2) определение тиомочевины. К 25 см 3 исследуемой пробы добавляют 0,5 см 3 раствора пентацианоакваферриата натрия, который готовят следующим образом. В 20 см 3 дистиллированной воды последовательно растворяют 1 г нитропруссида натрия и 1 г гидроксиламина солянокислого. Затем добавляют 2 г гидрокарбоната натрия. После прекращения выделения СО 2 добавляют 0,1 см 3 чистого жидкого брома, перемешивают, фильтруют и разбавляют дистиллированной водой в мерной колбе до 50 см 3 . Реактив сохраняет свои свойства около двух недель.

Измерение концентрации тиомочевины проводят после 40-50-минутной выдержки для полного завершения реакции образования комплекса тиомочевины и пентацианоакваферриата натрия.

Концентрацию тиомочевины определяют на фотоколориметре КФК-2 с кюветой толщиной 3 см и длине волны 590 нм интерполяционным методом по результатам трех совокупных измерений, одно из которых исследуемая проба, а два других - модельные растворы, приготовленные из исследуемой пробы с фиксированным разбавлением исходной пластовой воды и фиксированной добавкой тиомочевины в таком количестве, чтобы сигнал прибора для одного из них был больше, а для другого меньше сигнала в пробе. Для повышения точности анализа, в связи с наложением спектров поглощения флуоресцеина натрия на спектр комплексного соединения тиомочевины при длине волны 590 нм при определении концентрации тиомочевины, в исследуемую пробу добавляют флуоресцеин натрия в количестве, равном измеренному по п.1. интерполяционным методом на приборе Флюорат 02-3М.

Экспериментальную оценку выполнения предлагаемого и известного способов количественного анализа тиомочевины и флуоресцеина натрия при их совместном присутствии в пластовых водах проводили на примере анализа трех смесей этих индикаторов. Первая и вторая смеси содержали соответственно минимальные и максимальные концентрации анализируемых индикаторов, измеряемые приборами Флюорат 02-3М и КФК-2. Третья смесь содержала средние значения концентраций индикаторов в диапазоне измерения приборов. Для определения содержания отдельных индикаторов в анализируемой пробе известным способом использовали градуировочные зависимости вида

где D i - сигнал спектрофотометра; С i - концентрация индикатора; а i и b i - коэффициенты градуировочной зависимости.

Градуировочные растворы готовили с использованием среднеминерализованной пластовой воды с добавками соответствующих реагентов для каждого отдельного индикатора. При построении градуировочной зависимости для определения тиомочевины в градуировочные растворы дополнительно добавляли флуоресцеин натрия со средней в пределах диапазона измерения концентрацией, чтобы уменьшить его влияние на результат измерения концентрации тиомочевины из-за наложения спектров поглощения при измерении индикаторов на выбранной длине волны.

Результаты градуировки приборов представлены в таблице 1.

Таблица 1

Результаты градуировки приборов для определения тиомочевины и флуоресцеина натрия

n / n

Наименование индикаторов и измерительного прибора

Линейный диапазон измерения концентрации, мг/л

Коэффициенты градуировочной зависимости и доверительные интервалы измерения

b± b

a± a

1

Флуоресцеин натрия Флюорат 02-3М

0,02-0,2

0,9±0,045

0,11±0,055

2

Тиомочевина КФК-2

2,0-20,0

0,06±0,003

0,21±0,02

Измерение концентрации индикаторов предлагаемым способом осуществляли интерполяционным методом по результатам трех совокупных измерений по уравнению

где С i - концентрация i-го индикатора в исследуемой пробе; C 1 и С 2 - концентрации индикатора в двух модельных растворах; D i , D 1 и D 2 - сигналы спектрофотометра соответственно для i-го индикатора в пробе и в модельных растворах 1 и 2, причем D 1 >D i >D 2 .

Результаты эксперимента сведены в таблицу 2.

Таблица 2

Сравнительные данные экспериментальной проверки известного и предлагаемого способов

n / n

Исследуемые смеси

Концентрация индикатора, мг/л

Известный способ

Предлагаемый способ

Сигнал прибора, D i

Концентрация, измеренная по (1), мг/л

* , %

Сигнал прибора

Концентрация, измеренная по (2), мг/л

* , %

D 1

D 2

D i

1

Флуоресцеин натрия

0,04

0,144

0,038

5,0

0,137

0,155

0,145

0,039

2,5

Тиомочевина

2,0

0,315

1,75

12,5

0,401

0,224

0,326

1,93

3,5

2

Флуоресцеин натрия

0,2

0,304

0,216

8,0

0,305

0,256

0,297

0,208

3,8

Тиомочевина

20,0

1,576

22,76

13,8

1,582

1,23

1,46

20,86

4,3

3

Флуоресцеин натрия

0,12

0,211

0,112

6,6

0,221

0,198

0,214

0,116

3,3

Тиомочевина

11,0

0,94

11,7

6,4

0,916

0,814

0,891

11,35

3,2

* Относительная погрешность определения концентрации i-го индикатора по уравнениям (1) и (2).

Как видно из приведенных в таблице 2 данных, предлагаемый способ обеспечивает значительное повышение точности определения количественного содержания тиомочевины и флуоресцеина натрия при их совместном присутствии в исследуемых пробах по сравнению с известным способом. Так, при анализе всех трех исследуемых смесей максимальная относительная погрешность определения концентрации тиомочевины не превышает 4,3%, в то время как для известного способа максимальная погрешность определения концентрации тиомочевины составляет 13,8%.

Определение концентрации флуоресцеина натрия и тиомочевины интерполяционным методом в предлагаемом способе вместо построения градуировочной зависимости обеспечило уменьшение относительной погрешности измерения в среднем более, чем в два раза, что, по-видимому, связано с частичным исключением нелинейности сигнала приборов от концентрации на результаты измерения.

Использование предлагаемого способа количественного анализа тиомочевины и флуоресцеина натрия в пластовых водах позволяет повысить точность определения многокомпонентных композиций индикаторов при индикаторных исследованиях на нефтяных промыслах за счет нелинейности сигнала в точке измерения, а также уменьшить трудозатраты при измерении путем исключения градуировочной зависимости.

Формула изобретения

Количественный анализ тиомочевины и флуоресцеина натрия при их совместном присутствии в пластовых водах, при котором исследуемую пробу отделяют от нефти, очищают от механических примесей, осветляют в центрифуге и добавляют в полученный раствор щелочи для количественного определения флуоресцеина натрия люминесцентным методом, отличающийся тем, что концентрации тиомочевины и флуоресцеина натрия определяют интерполяционным методом по результатам трех совокупных измерений, одно из которых относится к исследуемой пробе, а два других - к модельным растворам, приготовленным из исследуемой пробы путем фиксированного разбавления исходной пластовой водой (без индикатора) и фиксированной добавки исследуемого индикатора в таком количестве, чтобы сигнал одного из модельных растворов был больше, а другого меньше, чем сигнал исследуемой пробы, причем для анализа тиомочевины в исследуемую пробу добавляют фиксированное количество пентацианоакваферриата натрия и флуоресцеин натрия в количестве, равном измеренному в исследуемой пробе люминесцентным методом.